PSC Mechanical Engineering Examination Previous Year Question Paper

Exam Name: Mechanical Engineering

Date of Test : n/a

Question Paper Code: 078/2015

Medium of Questions: English

PART II

Answer ALL questions. Answer shall be limited to one paragraph.

Questions 31 to 38 carry 10 marks each.

- 31. A leather belt 9 mm × 250 mm is used to drive a cast iron pulley 900 mm in diameter at 336 rpm. If the active arc on the smaller pulley is 120° and the stress in tight side is 2 MPa, find the power capacity of the belt. The density of leather may be taken as 980 kg/m³ and the coefficient of friction of leather on cast iron is 0.35.
- 32. A component is subjected to completely reversed stress cycle which varies over a 30 second time period, as follows:

10 cycles at 500 MPa

5 cycles at 600 MPa

3 cycles at 700 MPa

The corresponding fatigue lives for the above stresses are 10^5 , 4×10^4 and 1.5×10^4 cycles respectively. Determine the fatigue life of the component.

- 33. A Diesel engine has a compression ratio of 14 and cut-off takes place at 6% of the stroke. Find the air standard efficiency.
- 34. A 400 kg diesel engine mounted on a chassis frame runs at 500 rpm. The static deflection of the weigh is 2.4 mm. The reciprocating parts have a mass of 18 kg. The stroke of the engine is 160 mm. The damping coefficient of the dash pot attached is 2 N/mm/s. Determine the amplitude at steady state and the resonance speed
- 35. A cantilever of length T, moment of inertia T and Young's modulus T carries a concentrated load T at the middle of its length. Calculate the slope of the cantilever at the free end.
- 36. A person of mass 80 kg and another person of 60 kg stand side by side at the same end of a 130 kg boat, ready to dive each with a velocity of 5 m/s relative to the boat. Determine the velocity of the boat after they have both dived. Assume that the 80 kg person dives first.
- 37. A boiler produces 2000 kg of dry and saturated steam per hour at 10 bar and feed water is heated by an economizer to a temperature of 110°C. 225 kg coal of a calorific value of 30100 kJ/kg are fired per hour. If 10% of coal remains unburnt find the thermal efficiency of the boiler. Enthalpy of dry saturated steam at 10 bar is 2776.2 k J/kg.
- 38. A damped vibrating system consists of a mass of 8 kg which makes 30 oscillations in 18 seconds. After 5 oscillations, the amplitude reduced to 0.25 times the initial value. Determine the spring stiffness, logarithmic decrement, damping coefficient and damping factor.

- 24. In arc welding process an increase in the arc length
 - (a) Increases the voltage, causing fall in the current and thereby decreasing melting rate
 - (b) Decreasing the V, causing tall in I and thereby decreasing melting rate
 - (c) Increases the V, causing an increase in I and melting rate
 - (d) Decreases the V, causing an increase in I and melting rate
- 25. A domestic refrigerator is loaded with food and the door closed. During a certain period the machine consumes 1 kWhr of energy and the internal energy of the system drops by 5000 kJ. Find the net heat transfer of the system
 - (a) 8.6 MJ

(b) -8.6 MJ

(c) 5 MJ

- (d) -5 MJ
- 26. The operation of enlarging a hole is called
 - (a) drilling

(b) reaming

(c) boring

- (d) counter sinking
- 27. In a fuel cell electricity is produced by
 - (a) Combustion of fuel

(b) Oxidation of fuel

(c) Thermionic action

- (d) All of the above
- 28. In transonic regime Mach number is between
 - (a) 0.8 1.2

(b) 0.8-5

(c) 1.2-5

- (d) 0.2-1
- 29. If the arrival takes place every 10 minutes with a service time of 4 minutes per unit, then the mean arrival rate, mean service rate and the probability one would have to wait will be respectively
 - (a) 1,0.4, 0.25

(b) 0.1, 0.25, 0.1

(c) 0.1, 0.25, 0.4

- (d) 1.0, 0.4, 0.25
- 30. Oil flows through a 200 mm diameter horizontal cast iron pipe, friction factor f = 0.0225 at a rate of flow 0.2 m³/s. What is the length of the pipe if head loss due to friction is 118.16 m of the oil? $g = 9.81 \text{m/s}^2$?
 - (a) 500 m

(b) 1000 m

(c) 250 m

(d) 200 m

19.	smo	othin	al demand of the pro- ig 0.3, what would be if forecasting?	duct i the fo	s 65, the prorecast for t	reviou he cu	s year's forecast is 60 and the value or rrent year using exponential smoothing
		(a)	61.5			(b)	60
		(c)	62.5	1		(d)	62
20.	Shrinkage allowance is provided in the pattern to compensate for shrinkage when						
		(a)	The temperature of	liquid	metal drop	s fron	n pouring to freezing temperature
		(b)	The metal changes f	rom l	iquid to soli	d stat	te at freezing temperature
	(c) The temperature of solid phase drops from freezing to room temperature						
		(d)					ing to room temperature
21.	Mat	ch th	e following :				
	1	Equ	ipment		Paramete	r mea	sured
	A.	Diff	raction grating	1.			deviations on long flat surfaces
	B.	Opt	ical flat	2.			rement of moving part
	C.	Auto	collimator	3.			of gear pitch
	D.	Lase	er scan micrometer	4.	Surface te	xture	using interferometry
				5.	Measurem	ent o	f very small displacements
		(a)	A-4, B-5, C-1, D-2			(b)	A-5, B-4, C-1, D-2
,		(c)	A-1, B-2, C-4, D-5			(d)	A -2, B-4, C-1, D-5
22.	Reyr	olds'	s number is the ratio	of iner	rtia force to		
		(a)	Viscous force			(b)	Gravity Force
		(c)	Elastic Force			(d)	Pressure Force
23.		perce		ing s	peed requir	ed to	give 50% reduction in tool life when
		(a)	50			(b)	53
		(c)	18.9			(1)	95 9

12.	In machining a job on a shaper ram makes 40 strokes per minute and the length of the stroke is 150 mm. Calculate the cutting speed.					
	(a)	10 m/min	(p)	6 m/min		
	(c)	3.6 m/min	(d)	5.6 m/min		
13.	Which one	of the following is a stress re	elieving treatme	ent?		
	(a)	Normalizing	(b)	Annealing		
	(c)	Case hardening	(d)	Tempering		
14.	A solid shaft resists a bending moment of 3 kN-m and a twisting moment of 4 kN-m together, then maximum torque that can be applied is					
	(a)	7 kN-m	(b)	3.5 kN-m		
	(c)	4 kN-m	(d)	5 kN-m		
15.	The thermal gradient in a heat generating cylinder under steady conduction at half the radius location will be					
	(a)	One half of that at surface	(b)	One fourth of that at surface		
	(c)	Twice that at the surface	(d)	Four times that at the surface		
16.	An Opera	ting Characteristics (OC) is a	plot between			
	(a)	Consumer's risk and produc	er's risk			
(b) Probability of acceptance and probability of rejection (c) Percentage of defectives and probability of acceptance				f rejection		
				acceptance		
	(d)	Average outgoing quality ar	nd probability o	f acceptance		
17.	An extern is the cen	n of 80 teeth module being 6 mm. What				
	(a)	1200	(b)	480		
	(c)	800	(d)	600		
18.	A hydraulic turbine develops 1500 kW under a head of 50 m, If the head is reduced to 25 m the power developed in kW is					
	(a)	600 kW	(b)	800 kW		
	(c)	750 kW	(d)	1200 kW		
+						

		p will p is 1, 1110	n COP of the re	same temperature limits. The coeffic frigerator will be	ciei
	(a)	3	(b)	4	
	(c)	5	(d)	6	
7.	An adiab	atic process is the one in wh	ich		
	(a)	No heat gain or loss for th	e working subst	tance	
	(b)	The temperature of the wo			
	(c)	The change in internal en			
	(d)	All of the above			
8.		tage rocket is launched ver constant upward acceleration ne maximum altitude reache	n of 5 m/s2. If th	with its thrust programmed to give ne fuel is exhausted 10 seconds after (assuming $g = 9.8 \text{ m/s}^2$) is	the
	(a)	240 m	(b)	250 m	
	11	055 55			
	(c)	377.55 m	(d)	357.55 m	
9.	The power			357.55 m the relation between maximum tens	sion
9.	The power	r transmitted by the belt is 1		the relation between maximum tens	sion
9.	The power	r transmitted by the belt is n ntrifugal tension (T _c) is	naximum when	the relation between maximum tens	sion
	The power (T) and ce (a) (c)	r transmitted by the belt is a ntrifugal tension (T_c) is $T = T_c$	maximum when	the relation between maximum tens $T = 0.5 \; T_c \label{eq:Tc}$	sion
	The power (T) and ce (a) (c)	r transmitted by the belt is a ntrifugal tension (T_c) is $T = T_c$ $T = 2T_c$	maximum when	the relation between maximum tens $T = 0.5 \; T_c$ $T = 3T_c$	sion
	The powe (T) and ce (a) (c) Cold work	r transmitted by the belt is a ntrifugal tension (T_c) is $T = T_c$ $T = 2T_c$ ing is carried out at	maximum when (b) (d)	the relation between maximum tens $T = 0.5 \; T_c \label{eq:Tc}$	sion
	The power (T) and certain (a) (c) Cold work (a) (c) In a binary phase of 86	r transmitted by the belt is a ntrifugal tension (T _c) is $T = T_{c}$ $T = 2T_{c}$ ing is carried out at Room temperature Below recrystallisation tem y alloy system of A and B 1	(b) (d) (b) perature (d)	the relation between maximum tens $T = 0.5 \; T_c$ $T = 3T_c$ Below melting temperature	1. 1
0.	The power (T) and certain (a) (c) Cold work (a) (c) In a binary phase of 86	r transmitted by the belt is a ntrifugal tension (T_c) is $T = T_c$ $T = 2T_c$ ing is carried out at Room temperature Below recrystallisation temperature and T_c y allow system of A and B 10% A(20%B). For an overall	(b) (d) (b) perature (d)	the relation between maximum tens $T = 0.5 T_c$ $T = 3T_c$ Below melting temperature $Below 150^{\circ}C$	1: 1

78/2015

(Pages: 6)

Maximum: 200 marks

Time: 11/2 hours

PART I

Answer ALL questions. Answer in one word or a sentence.

Questions 1 to 30 carry 4 marks each.

1.	Which one of the following cast irons consists of carbon in rosette form?						
	(a)	White cast iron			Gray cast iron		
	(c)	Malleable cast iron		(d)	Nodular cast iron		
2.	The specific speed of a centrifugal pump depends on the						
	(a)	Speed and discharge		(b)	Discharge and power developed		
	(c)	Speed and head of w	ater	(d)	Speed, discharge and head of water		
3.	The annual load factor and the capacity factor in a power plant is 0.6 and 0.5 respectively. The average energy consumption is 876 MWh. The reserve capacity of the plant is						
Ž.	(a)			(b)	133.33 kW		
	(c)	33.33 kW		(d)	166.66 kW		
4.	Match t	he following metal form	ning proce	sses with thei	r associated stresses in the work piece.		
		etal forming process		Type of force			
-	(I) W	ire drawing	(1)	Compressive	force		
	(II) B	lanking	(2)	Tensile force			
	(III) E	xtrusion	(3)	Shear force			
4	(IV) B	ending	. (4)	Spring back	force		
	(a) $I-1, II-3, III-4,$	IV-2	(b)	I – 2, II – 3, III – 1, IV – 4		
	(c) I-2, II-3, III-4,	IV - 1	(d)	I – 3, II – 4, III – 1, IV – 2		
5	Inaga	ting system the ratio 1	: 2 : 4 repr	esents			

[P.T.O.]

Sprue base area: runner area: ingate area

Sprue base area: ingate area: casting area

Runner area: ingate area: casting area

Pouring basin area: runner area: ingate area

(a)

(b)

(c)

(d)