PSC Assistant Engineer - United Electrical Industries Ltd Examination Previous Year Question Paper

Exam Name: Assistant Engineer - United Electrical Industries Ltd

Date of Test: 07.01.2016

Question Paper Code: 005/2016

Medium of Questions: English

005/2016

Maximum: 100 marks

				Time: I hour and 15 influtes
1	Kirchhoffs	Voltage Law (KVL) is a restatement	of:	
1.	(A)	Principle of conservation of charge	(B)	Principle of conservation of energy
		Both (A) and (B)	(D)	None of the above
2.	If the num	ber of turns of a coil is doubled, its in	ductan	ice:
		Decreases two times	(B)	Decreases four times
	(C)	Increases two times	(D)	Increases four times
3.	respectivel	ly are connected in parallel across a	V and load of	internal resistances 2 Ω and 3 Ω resistance of 1 Ω . The current drawn
	by the load		(B)	1A
	(C)	4 A	(D)	2 A
4.	1000 revol a flux den coil is para	utions per minute about an axis at rusity of 0.5 wb/m². The instantaneous allel to the plane of the field is:	gnt an s value	is is rotated at a uniform speed of ingles to a uniform magnetic field having of induced emf when the plane of the
	(A)	Zero	(B)	40.5 V
	(C)	52.3 V	(D)	
5.	In an RLO	C series circuit, $R = 2\Omega$, $X_L = 4\Omega$ as	nd X_C	= 6Ω . The current is 5 A. The applied
	voltage in	the circuit is:	(P)	10.44 V
	(A)	14.14 V	(B) (D)	
	(C)	141.4 V		
6.	A current	of 10 A flows in a circuit with 30° at tance, reactance and impedance are :	ngle o	f lag when the applied voltage is 100 V
		8.666 Ω, 5 Ω, 10 Ω	(B)	
	(C)	10 Ω, 0.866 Ω, 5 Ω	(D)	0.866 Ω, 10 Ω, 5 Ω
7.		placed parallel to the lines of force		agnetic field and a current flows in thi
	(A)	The wire experiences a force in the	directi	on of the magnetic field
	(B)	The wire does not experience any fo	orce	
	(D)	The wire experiences a force in a di	rection	opposite to the magnetic field
	(D)	The wire experiences a force in a di	rection	n perpendicular to the magnetic field
A		8		рто

dissipated by the resistance is:

(A) 10,000 W

(C) 250 W

8.

9.

	impedance of $10 - 30^{\circ} \Omega$ in each phase. How much current is flowing through the neutral?				
	(A)	10 A	(B)	1A	
		0 A		5.77 A	
10.		the torque and I_a relation is valid, aft	ter core saturation?	for a DC series motor, which of th	e
	(A)	$T_a \alpha I_a^2$	(B)	$T_a \alpha = \frac{1}{(I_a)^2}$	
	(C)	$T_a \alpha \frac{1}{I_a}$	(D)	$T_{o} \alpha I_{o}$	
11.	The perm	issible flux density	of cold rolled grain orie	ented steel used for transformer core i	8
	(A)	1.7 wb/m ²	(B)	2.7 wb/m ²	
	(C)	3.5 wb/m ²	(D)	0.5 wb/m ²	
12.	150 revol	utions during 50 sec	onds, what is the power		8
	(A)	100 W	(B)	720 W	
	(C)	600 W	(D)	1000 W	
13.	resistance			100 μA (micro ampere) and interna ximum current of 10 mA. The shun	
	(A)	1.10 Ω	(B)	1.01 Ω	
	(C)	1.11 Ω	(D)	1.00 Ω	
14.	length of coil when	30 mm and flux decarrying a current of	nsity in the air gap is 0.	around on a square former which has a 09 wb/m ² . The deflecting torque on the	
	(A)	27 × 10 ⁻⁶ Nm	(B)	8.1 × 10 ⁻⁶ Nm	
	(C)	$2.7 \times 10^{-6} \mathrm{Nm}$	(D)	81 × 10 ⁻⁶ Nm	
15.			ad, unity power factor tes 0 rev/KWh, what is the p	st makes 72 revolutions in 360 seconds percentage error?	1000
	(A)	0.12%	(B)	1.2%	
	(C)	0.434%	(D)	4.17%	
005/	2016		4	A	1

Join PSC WhatsApp Broadcast List: 90747 20773

If a 10 Ω resistance is connected to an a.c. supply $v = 100 \sin(314 t + 37)$ V, the power

A three phase, four wire 100 V(L-L) system supplies a balanced star connected load having

(D)

1000 W

500 W

A

005/2016

[P.T.O.]

16.	In a movir	ng iron instrument, the deflection toro	que, T_d	is:
	(A)	Directly proportional to square of cu	rrent	
	(B)	Inversely proportional to square of c	urrent	
	(C)	Directly proportional to current		
	(D)	Inversely proportional to current		
17.	Inductano	e affects the direct current (d.c.) flow	:	
	(A)	only at the time of turning off	(B)	only at the time of turning on
	(C)	at the time of turning on and off	(D)	at all the time of operation
18.	For a sine	wave with peak value E_{max} , the average	rage val	ue is:
		$0.636~E_{\mathrm{max}}$	(B)	$0.707~E_{ m max}$ $1.414~E_{ m max}$
		$0.434~E_{ m max}$	(D)	$1.414~E_{ m max}$
			is least	in:
19.		of starting torque to full load torque DC series motor	(B)	DC shunt motor
	(A)	DC compound motor	(D)	None of the above
	(C)			1 Min industrance
20.			ed so th	at it becomes air-cored. The inductance
	of the coi		(B)	becomes zero
	(A)	remains the same	(D)	increases
	(C)	decreases	1	
21.	The forbi	dden energy band gap for Germaniur	n is:	
	(A)		(B)	0.32 eV
	(C)		(D)	7.2 eV
22.	When the	e reverse bias is applied to a junction	diode:	
	(A)	The minority carrier current is inc	reased	
	(B)	The majority carrier current is inc	reased	
	(C)	The potential barrier is lowered		
	(D)	The potential barrier is increased		
23.	In a full-	wave rectifier which uses two ideal d	liodes, tl	he approximate relationship are:
		$V_{dc} = \frac{V_m}{\pi}$, $PIV = 2V_m$	(B)	$V_{dc} = \frac{2V_m}{\pi}$, $PIV = 2V_m$
	(C)	$V_{dc} = \frac{2V_m}{\pi}$, $PIV = V_m$	(D)	$V_{dc} = \frac{V_m}{\pi}, PIV = V_m$
		n		*
24.	A forwa	rd biased silicon diode when carry	ing a n	egligible current has a voltage drop of
-	0.65 V.	When the current through the did	de is i	ncreased to 1A, it dissipates 500 mW.
	The ON	-resistance of the diode is:	1000	
	(A		(B)	
	(C) 0.65 Ω	(2)	

5

25.	Which of	the following statement is corre	t for the basic transistor configuratio	ns?			
	(A) CB configuration has low input impedance and a low current gain						
	(B)	B) CC configuration has low output impedance and a high voltage gain					
	(C)						
	(D)		afiguration is higher than the cu				
		CC configuration					
26.	A Bipolar		operating in saturation region if				
	(A)		sed and collector junction is reverse b				
	(B)		ed and collector junction is forward b	piased			
	(C)	Both the junctions are forward					
	(D)	Both the junctions are reverse	biased				
27.		ff voltage of a JFET is:					
	(A)		hich the drain current starts to satur				
	(B)		which the drain current becomes zero				
	(C)		which the drain current becomes zero				
	(D)	(D) The channel-to-gate reverse bias voltage at which the drain current starts to					
		saturate					
28.	The best	material for the gate region cons	ruction of a MOSFET is:				
	(A)	High purity silicon	(B) High purity silica				
	(C)	Epitaxial grown silicon	(D) Heavily doped polycryst	alline silicon			
29.	The comm	non-emitter short circuit current	gain β of a BJT:	Man .			
	(A)	Is a monotonically increasing f	nction of Ie				
	(B)	Is a monotonically decreasing	inction of I_c				
	(C)		es of I_c , reaches a maximum and the	nen decreases			
		with further increase in I_c					
	(D)	Is not a function of I_c					
30.	For full-v	vave rectification, a four-diode	bridge rectifier is claimed to have	the following			
		es over a two-diode circuit :	04	the following			
	(1)	Less expensive transformer	the second second make a				
	(2)	Smaller size transformer and					
	(3)	Suitability for higher voltage a	plication				
		Of these					
	(A)	Only (1) and (2) are true	(B) Only (1) and (3) are true				
	(C)	Only (2) and (3) are true	(D) (1), (2) and (3) are true				
31.	A 1 MHz	sinusoidal carrier wave is ampl	tude modulated by a sine wave of pe	riod 100 us.			
			be present in the modulated output s				
	(A)	990 KHz	(B) 1000 KHz				
	(C)	1010 KHz	(D) 1020 KHz				

32.	made usir	ng identical ope	erational amplifi	a unity gain ers. As comp	and the other havir ared to the unity g	ng a gain of 10, are gain amplifier, the
	amplifier	circuit with gain	f 10 has .	(B)	Greater input impe	dance
		Less negative More bandwid		(D)	None of these	
						I to manima a madio
33.	The image	frequency of the	he AM super het	erodyne recei	ver when it is tuned	1 to receive a radio
		erating at 628 l	AHZ 18:	(D)	1256 KHz	
		1538 KHz		(B) (D)	855.5 KHz	THE ARM VI
	(C)	1083 KHz				
34.	A 741 typ	e op-amp has a	gain bandwidth	product of 1 20 dB will ex	MHz. A non-inverti	ing amplifier using dth of :
	(A)	50 KHz	torongo Barrer	(B)	100 KHz	
				(7)	1000	
	(C)	$\frac{1000}{17}$ KHz		(D)	$\frac{1000}{70.7}$ KHz	
		The state of the state of	FOR GUME ON			
35.	How man	y number of NO	R gates are req	aired to realis	e an AND function?	
	(A)			(B)	3	
	(C)			(D)	5	
96	Cimplifie	d form of the log	ric expression :			
36.	/V	$V \cdot \overline{Z} \setminus (Y + \overline{Y})$	$+Z)(X+\overline{Y}+\overline{Z})$			
			+2)(11+1+2)	(B)	$XY + \overline{Z}$	
	(A)	X _		(D)	$\frac{XY + \overline{Z}}{\overline{X}Y + \overline{Z}}$	
	(C)	$X + \overline{Y}Z$		(D)	AITZ	
37.	The C-b	and is:				
01.	(A)	1 to 2 GHz		(B)	2 to 4 GHz	
	(C)	4 to 8 GHz		(D)	8 to 12 GHz	
38.	If D is thas:	ne distance betv	veen two co-char	anel cells and	R is the cell radius,	then D_R is known
	(A)	Co-channel in	nterference redu	ction factor	and the second second	
	· (B)	Adjacent cha	nnel interference	e reduction fa	ctor	
	(C)	Adjacent and	co-channel inter	ference redu	ction factor.	
	(D)	A STATE OF THE STA				
	wa 11	1.00	ion froquenci	es in a cluste	ris:	
39.			carrier frequenci	(B)	Adjacent cell	
	(A)		en	(D)	Macro cell	
	(C)			100		2
40.	Which of	the following is	s the correct stat	ement in com	nection with satellite	e communication:
	(A)	A satellite is	stationary in th	e outer - spac	e	
	(B)	Co-located ea	arth stations are	used for freq	wible for two earth	stations not to face
	(C)	Satellites ar	e allocated so th	at it is impo	SSIDIE IOI EWO CAIVA	stations not to face
	(D)	the same sat A satellite es transmitted	arth station mus	t have as ma	ny receiver chains	as there are carriers
		transmitted		7		005/2016
A						[P.T.O.]

41.	Two forces	of equal magnitude	e ' P ' act at an angle ' $ heta$	' to each oth	er. Their resu	dtant will be :
	(A)	$2P\sin\frac{\theta}{2}$	(B)	$2P\cos\frac{\theta}{2}$		
	(C)	$P\cos\frac{\theta}{2}$	(D)	$P\sin\frac{\theta}{2}$		

42. The unit of energy in SI system of units is:

(A) watt

(C) joule

(B) dyne (D) kg-m

43. The moment of inertia of a thin disc of mass 'm' and radius 'r', about an axis passing through its centre of gravity and perpendicular to the plane of the disc is:

(A) 0.5 mr2

(B) mr²

(C) $0.25 \ mr^2$

(D) 2 mr2

44. The ratio of limiting friction to the normal reaction between the two bodies is defined as :

(A) Sliding friction

(B) Angle of friction

(C) Friction of resistance

(D) Coefficient of friction

45. The loss of kinetic energy during the impact of collision of two inelastic bodies (mass = m_1 , m_2 , velocities = u_1, u_2) is given by:

(A) $\frac{m_1 m_2}{(m_1 + m_2)} (u_1 - u_2)^2$

(B) $\frac{m_1 m_2}{2(m_1 + m_2)} (u_1 - u_2)^2$

(C) $\frac{m_1 m_2}{2(m_1 + m_2)} (u_1 - u_2)$

(D) $\frac{m_1 m_2}{2(m_1 - m_2)} (u_1 - u_2)^2$

46. The maximum deflection at the centre of a simply supported beam of length 'l' with a uniformly distributed load w/unit length is given by:

(A) $\frac{5wl^3}{192 EI}$

(B) $\frac{5wl^3}{384 EI}$

(C) $\frac{5wl^4}{384 EI}$

(D) $\frac{5wl^4}{192 EI}$

47. If the momentum of a given body is doubled, its kinetic energy will:

(A) Increase by four times

(B) Increase by two times

(C) Increase by eight times

(D) Gets halved

48. For a given velocity of projectile, the horizontal range will be maximum when angle of projection with the horizontal is:

(A) 45°

(B) 30°

(C) 60°

(D) 90°

49. For a compound pendulum with distance 'h' from the point of suspension 'O' and a radius of gyration 'k_G' about an axis through the centre of gravity and perpendicular to the plane of motion, the periodic time (t_p) is given by:

(A)
$$2\pi \sqrt{\frac{k_G^2}{gh}}$$

(B)
$$2\pi \sqrt{\frac{gh}{k_G^2}}$$

(C)
$$2\pi \sqrt{\frac{gh}{k_G^2 + h^2}}$$

(D)
$$2\pi \sqrt{\frac{k_G^2 + h^2}{gh}}$$

50. The force acting on a body when rotates along the radius of a circular path and is always directed towards the centre of the path:

(A) Centrifugal force

(B) Centripetal force

(C) Shear force

(D) Moment of force

51. Which of the following welding process uses non-consumable electrode?

(A) MIG welding

(B) LASER welding

(C) Atomic hydrogen welding

(D) Plasma welding

52. A casting method which produces castings within very close tolerances (± 0.05 mm) and do not require further machining is known as:

(A) Permanent mould casting

(B) Slush casting

(C) Centrifugal casting

(D) Investment casting

53. A forging method in which only a small portion of the part is deformed at any particular time and can be applied only to circular products is called:

(A) Wobble forging

(B) Rotary forging

(C) Cored forging

(D) Drop forging

54. In which of the following non conventional machining process, the material is removed by using abrasive slurry between the tool and work:

(A) Electric-discharge Machining

(B) Electro Chemical machining

(C) Ultrasonic machining

(D) Electric discharge grinding

55. Which one of the following is an operation of producing flat surface at an angle to the axis of the cutter?

(A) Angular or bevel milling

(B) Plain or slab milling

(C) Helical or slab milling

(D) Face milling

56. The relationship between the tool life (T) in minutes and cutting speed (V) in m/min is given by:

(A) $VT^n = C$

(B) $V^nT = C$

(C) $\frac{V}{T^n} = C$

A

(D) $\frac{V^n}{T} = C$

Where n = an exponent depending on tool and work piece and C = constant

005/2016 [P.T.O.] In a lathe, which one of the following is used to hold hollow work pieces to machine their external surface:

(A) Chucks

(B) Mandrels

(C) Centers

(D) Lathe dog or Carrier

58. If 'FC' is the total fixed cost, 'VC' is the variable cost per unit and 'SP' is the selling price per unit, then Brake Even Point (BEP) in terms of sales revenue is equal to:

(A) $\frac{FC}{1 + \frac{SP}{VC}}$ (C) $\frac{FC}{1 - \frac{SP}{VC}}$

(B) $\frac{FC}{1 + \frac{VC}{SP}}$ (D) $\frac{FC}{1 - \frac{VC}{SP}}$

59. If 'D' is the annual demand in units, 'C' is the order cost and 'H' is the holding cost per unit per year, then the Economic Order Quantity (EOQ) is equal to:

(A) $\sqrt{\frac{2C}{DH}}$ (C) $\sqrt{\frac{2CH}{D}}$

(B) $\sqrt{\frac{2CD}{H}}$ (D) $\sqrt{\frac{2H}{CD}}$

60. Which one of the following layout is suitable for continuous production?

(A) Process layout

(B) Product layout

(C) Mixed layout

(D) Static layout

61. A closed system is one in which:

- (A) Heat and work crosses the boundary of the system but mass does not crosses the boundary
- Both heat and work as well as mass crosses the boundary of the system
- (C) Mass crosses the boundary of the system but heat and work does not crosses the boundary
- Neither the heat and work nor the mass crosses the boundary of the system

62. In a vapour compression refrigeration system before entering the throttle valve, the refrigerant is in the form of:

(A) Superheated vapour

- Wet vapour
- High pressure saturated liquid
- (D) Dry vapour

The efficiency of Carnot cycle is maximum when:

- (A) Initial temperature is 0°K
- (B) Final temperature is 0°K
- (C) Difference between initial and final temperature is 0°K
- Keeping the final temperature constant

64.	In SI syste	em of units, One tonne of refrigeration	n is tak	en as equivalent to :
01.	(A)	210 kJ/min	(B)	2100 kJ/min
	(C)	3.5 kW	(D)	35 kW
65.		e engines as compared to four stroke on ratio have :	engine	es having same output rating and same
	(A)	Higher overall efficiency	(B)	Lower mechanical efficiency
	(A)	Lower thermal efficiency	(D)	Higher weight to power ratio
66.	A closed g	as turbine works on :		
	(A)	Stirling cycle	(B)	Carnot cycle
	, (C)	Rankine cycle	(D)	Joule cycle
67.	The head	against which a centrifugal pump has	s to wo	rk is known as:
	(A)	Static head	(B)	Total head
	(C)	Net positive suction head	(D)	Manometric head
68.	The hydra	aulic efficiency of an impulse turbine	is maxi	mum when:
17.00	(A)	The velocity of the wheel is half the	velocit	y of the jet of water at inlet
	(B)	The velocity of the wheel is double t	he velo	city of the jet of water at inlet
	(C)	The velocity of the wheel is equal to	the ve	locity of the jet of water at inlet
	(D)	The velocity of the wheel is three for	urth of	the velocity of the jet of water at inlet
69.	The powe	r transmitted by the belt is maximum	when	the maximum tension in the belt is:
		Equal to the centrifugal tension	(B)	Two times the centrifugal tension
	(C)	Three times the centrifugal tension	(D)	Four times the centrifugal tension
70.	Bevel gea	rs are used to transmit rotary motion	betwe	en two shafts whose axes are :
		Non-intersecting and non parallel		
	· (B)	Parallel and coplanar		
	(C)	Non-coplanar		
	(D)	Non-parallel or intersecting but cop	lanar	
71.	In levelli	ng, the reading is taken on a staff he reading is recorded as 1.875 m. The h	eld at a	a point of known elevation of 123.45 m, f instrument is :
	(A)	1.875 m	(B)	121.575 m
	(C)	123.45 m	(D)	125.325 m
72.	According should be		th of fo	oundation below natural ground surface
	(A)	600 mm	(B)	450 mm
	(C)	500 mm	(D)	750 mm
A		11		005/2016 (P.T.O.)

70	P						
73.		n of strength of cement is due					
A		C ₃ S		C ₂ S			
	(C)	C ₃ A	(D)	Both (B) and (C)			
74.	Which of	the following is responsible for	most of undes	irable properties of concrete?			
	(A)	C ₃ S	(B)	C ₂ S			
	(C)	C ₃ A	· (D)	C ₄ AF			
75.	the effect	ers where cracking in the tensi is of weather or continuously oper IS-456: 2000 is :					
	(A)	0.3 mm	(B)	0.2 mm			
	(C)	0.1 mm	(D)	0.03 mm			
76.	As per IS	456 -2000, the diameter of the	reinforcing ba	rs in slabs shall not exceed:			
	(A)	One eighth of the total thicks	ness of the slab				
	(B)						
	(C)	(C) One sixth of the total thickness of the slab					
	(D)	One fourth of the total thickr	ness of the slab				
77.	limits spe	inal maximum size of coarse a cified but in no case greater th	an:	ald be as large as possible v	vithin the		
	(A)	One-third the thickness of me					
	(B)	One-fourth the thickness of n					
	(C)	One-fifth the thickness of me					
	(D)	One-sixth the thickness of me			, ,		
		provided that the concrete cathe reinforcement	an be placed v	rithout difficulty so as to su	rround all		
78.	In steel s exceed:	tructure, the slenderness rati	o of lacing ba	rs for compression members	shall not		
	(A)	90	(B)	250			
	(C)	180	(D)	145			
79.	In anaero	bic treatment of wastewater, tl	he formation o	f methane is through:			
	(A)	Conversion of acetates only		and the second			
	(B)	Conversion of hydrogen and c	arbon dioxide	only			
	(C)	Both acetate and hydrogen					
	(D)	None of the above					
80.	The incine	eration of municipal solid wast	es may result	n the formation of :			
	(A)	Dioxins and Furans	(B)	Methane			
	(C)	Chloroflouro carbon	(D)	None of the above			
005	/9010		10				
OUD	2016		12		A		

	(A)	Charthala		(D)	Varkala	
	(C)	Cherthala		(1)		
85.	The Guru	vayur Sathyagraha wa	s started on		1931.	
	(A)	2 nd October		(B)	1st November	
	(C)	8th November		(D)	1st February	
86.	Avvankal	i was started the first S	School for the lo	wer ca	tacca as	in 1904.
	(A)	Venganur		(B)	Pattom	
	(C)	Kariavattom		(D)	Kizhakkekotta	
87.	Al Islam	was published in 1906	by:	1		- Manlani
	(A)	Sayyid Ahammed Kh	an	(B)		
	(C)	Aga Khan		(D)	Moula Abdul Kalam A	zau
88.	The head	quarters of SAARC wa	s at:			
		Dhakka		(B)	Kathmandu	
	(C)	Delhi		(D)	Kolombo	
89.	The Nati	onal Food Security Act	was passed in	:		
00.	(A)			(B)	2013	
	(C)	2010		(D)	2005	
90.	Hunter (Commission was appoin	ited in India by	Lord I	Rippon in :	
50.	(A)			(B)	1885	
	(C)			(D)	1881	
		ted Nations Conference	on the Human	Envi	ronment held at	in June
91.	The Um 1972.	ted Nations Conference	e on the riumar			
	(A)	Stockholm		(B)	Delhi	
	(C)			(D)	Bandung	
	,0		13			005/2016
A			10			[P.T.O.]

92.	Al Hilal v	was published by :			
		Sayyid Ahammed Khan		(B)	Vakkaom Abdul Khadar Moulavi
	(C)	Aga Khan		(D)	Moula Abdul Kalam Azad
93.	The Jour	nal "Comrade" was published b	y :		
	(A)	Moulana Mohammed Ali			
	(B)	Vakkaom Abdul Khadar Mou	lavi		
	(C)	Aga Khan			
	(D)	Moula Abdul Kalam Azad			
94.		s the Nizam of Hyderabad o	luring th	e a	ccession to the Indian Union in the
	(A)	Muhammed Khan		(B)	Abdul Razak
	(C)	Osman Ali Khan		(D)	Sayyid Ahammed
95.	As a part	of Bengal Partition 16th day of	October 1	905	was observed as:
	(A)	Day of Mourning		(B)	Day of Dawn
	(C)	Day of Morning		(D)	Day of Partition
96.	Bandung	Conference was held in 1955 at	Bandun	g in :	
	(A)	Maldives		(B)	Russia
	(C)	Indonesia		(D)	France
97.	The most	prominent work on partition "I	reedom a	t M	idnight" is written by :
	(A)	Dominique Lapirre	VALUE DE	(B)	Krishna Baldev
	(C)	Bhishmasahini		(D)	Bapsi Sidhwa
98.	Operation	Vijay was associated with:			
	(A)	Gulf War		(B)	Kargil Crisis
	(C)	Punjab Crisis		(D)	Assam Turmoil
99.	Tashkent	Agreement was signed in 1966	by		—— and Ayub Khan.
	(A)	Lal Bhahadur Sastri		(B)	Indira Gandhi
	(C)	Rajiv Gandhi		(D)	Charan Singh
100.	Who wrote	e "Kerala Yesterday, Today and	Tomorro	w"?	
1	(A)	A.K. Gopalan		(B)	EMS Nambudirippad
	(C)	Nambiar O.K.		(D)	A. Sreedhara Menon