PSC Assistant Engineer - Direct/ By Transfer - Kerala Water Authority Examination Previous Year Question Paper

Exam Name: Assistant Engineer - Direct/By Transfer - Kerala Water Authority

Date of Test: 13.02.2016

Question Paper Code: 028/2016

Medium of Questions: English

028/2016

Maximum: 100 marks

Time: 1 hour and 15 minutes

 A triangle lamina having a base 1 m and height 1.5 m is placed vertically under water with the base parallel to the water surface and the base below 3 m of water. The total force exerted on one face is:

(A) 18.394 kN

(B) 18.394 kg

(C) 36.788 kN

- (D) 15.234 kg
- 2. If the velocity potential function is given by $\phi = 3x 4y$, find the magnitude and direction of velocity at any point:

(A) 4.87 m/s, 45°

(B) 5 m/s, 38° 3'

(C) 5 m/s, 53° 7'

- (D) 7 m/s, 61° 7'
- 3. A jet of water 40 mm in diameter has a velocity of 25 m/s. Find the power of the jet :

(A) 10.81 kW

(B) 9.82 kW

(C) 10 kW

- (D) 4.35 kW
- 4. Find the bed slope 'i' of a wide rectangular channel so that the flow to reach a given critical depth d_c and Manning's coefficient n:

(A) $i = \frac{gn^3}{d_s^{2/3}}$

(B) $i = \frac{gn^2}{d_{\epsilon}^{2/3}}$

(C) $i = \frac{gn}{d^{1/3}}$

- (D) $i = \frac{gn^2}{d_e^{1/3}}$
- 5. The discharge available from a tube well is 120 m³/hr. Assuming 3200 h of working of the tube well for a year, the intensity of irrigation as 50% and average depth of Rabi and Kharif crop as 48 cm, the culturable area that this tube well can command is:

(A) 160 ha

(B) 172 ha

(C) 168 ha

- (D) 80 ha
- 6. Lacey's formula for fixation of water way is:

(A) $V = 0.55 y^{0.64}$

(B) $4.75\sqrt{Q}$

(C) Q = KAi

(D) Q = AV

A

[P.T.O.]

7.				field. If the scale of plotting is 10 m to the displacement of the point on the	
		y not exceed 0.25 mm?			
	(A)	5.0 m	(B)	6.12 m	
F	·(C)	7.16 m	(D)	8.16 m	
8.		ving perpendicular offsets wer boundary line :	e taken at 10	m intervals from a survey line to an	
	3.25, 5.6,	4.2, 6.65, 8.75, 6.2, 3.25,4.2, 5.6	55. Calculate t	he area by trapezoidal rule	
	(A)	433 m ²	(B)	439.67 m ²	
	(C)	424.44 m ²	(D)	440 m ²	
9.	A square footing $2.5 \text{ m} \times 2.5 \text{ m}$ is built in a homogeneous bed of sand of unit weight 20 kN/m and having an angle of shearing resistance of 36° . The depth of the base of the footing is 1.5 m below the ground surface. Calculate the safe load that can be carried by a footing with a factor of safety 3 against complete shear failure? Bearing capacity factors $N_c = 65.4$, $N_q = 49.4$ and $N_r = 54.0$				
	(A)	4325 kN	(B)	4927.5 kN	
	(C)	5319.6 kN	(D)	5462.5 kN	
10.	Hydropho	bic cement is obtained by grind	ling ordinary l	Portland cement clinker with:	
+	(A)	Hydrochloric acid	(B)	Oleic acid	
	(C)	Glicerine	(D)	Acetol	
11.	How muci plasticizes		concrete mix	to be fluidised by plasticizers or super	
	(A)	2 to 3 cm	(B)	2 to 3 mm	
	(C)	5 cm	(D)	10 mm	
12.	ISO: 800- place a ch		- thickness ra	tios of the elements of a steel section to	
	(A)	Bending buckling	(B)	Torsional buckling	
	(C)	Flexural torsional buckling	(D)	Local buckling	
13.	The shape	e factor of a square of side 'a' w	ith its diagona	l parallel to the ZZ axis is:	
	(A)	2	(B)	1.7	
	(C)	2.343	(D)	2√2	

14.	Strength of a 20 mm diameter bolt of grade 4.6 for a single cover butt joint. The cover plate being 10 mm thick. Assume steel of grade Fe 410, $f_u = 410$ MPa, for bolts of grade 4.6,
	$f_{ab} = 400$ MPa, Partial safety factor for the material of the bolt $\gamma_{mb} = 1.25$ and net tensile
	stress area of 20 mm diameter bolt $A_{nb} = 245 \text{ mm}^2$, $k_b^* = 0.5 \text{ in single shear is}$:

(A) 80 kN

(B) 45.26 kN

(C) 96.0 kN

(D) 125 kN

15. Minimum grade of concrete mix used for water retaining structures with alternate wetting and drying:

(A) M 20

(B) M 25

(C) M 30

(D) M 35

16. A hook 12 mm diameter is embedded in concrete for a distance of 100 mm. Calculate the maximum load which the hook can carry if the bond stress is not to exceed 1.28 N/mm²:

(A) 5100 N

(B) 415 N

(C) 4825 N

(D) 5000 N

17. Year's purchase for an old building if its future life is 15 years and the rate of interest is 7% on capital and 4% for sinking fund:

(A) 8.333

(B) 9.231

(C) 10.11

(D) 10.21

18. A beam of span / carries a concentrated load P at mid span. Work done by the external load is:

(A) $\frac{p^2l^3}{48EI}$

(B) $\frac{p^2 l^3}{96 EI}$

(C) $\frac{pl^3}{96 EI}$

(D) $\frac{pl^3}{48 EI}$

19. A three hinged arch of span 20 m and rise 4 m carries a uniformly distributed load of 25 kN/m. Horizontal thrust is:

(A) 250 kN

(B) 500 kN

(C) 312.5 kN

(D) 425 kN

20. Find the shortest length L for a pin ended steel column having a cross section of $60 \, mm \times 100 \, mm$ for which Euler's formula applies. Take $Es = 2 \times 10^5 \, \text{N/mm}^2$ and critical proportional limit is 250 N/mm²:

(A) 6000 mm

(B) 2500 mm

(C) 2000 mm

(D) 1539 mm

A

028/2016 [P.T.O.]

2016		6	A		
(C)	Flanged joint	(D)	Socket and spigot joint		
(A)	Flexible joint	(B)	Expansion joint		
The pipe j	The pipe joint commonly used in pumping station are:				
(C)	Lime	(D)	Potassium Permanganate		
(A)	Alum	(B)	Quick lime		
In the cas	e of surface water with a	pH range of 6 to 8,	which is the most suitable coagulant:		
(C)	4 ppm	(D)	10 ppm		
(A)	1 ppm	(B)	40 ppm		
- Commercial					
The mini	mum dissolved oxygen w	hich should always	be present in water in order to save		
(C)	Rated Discharge	(D)	None		
(A)	Maximum	(B)	Zero		
At shut of	ff head of a centrifugal pu	imp, the discharge i	s:		
(C)	10.0 mlpd	(D)	9.0 mlpd		
(A)	7.934 mlpd	(B)	8.13 mlpd		
populatio per day. A	n density is 200 person Assume peak factor = 3. T	s/ha. The average he design flow for the	sewage flow is 150 litres per capita he main sewer is:		
			0.21 mm/s		
			3.1 mm/s		
carries so	olid particles with average	ge diameter of 0.05	mm and specific gravity 1.20. Given		
(C)	0.918 kg	(D)	None		
1,700			0.916 kg		
water is:					
0.5 ppm o	of chlorine. If the disinfect	ant is available in t	he form of bleaching powder containing		
(C)	Equivalent Pipe method	(D)	Electrical Analysis method		
	the same of the sa		Hardy Cross Method		
I Total					
		r distribution system	m is most suitable for long and narrow		
	(A) (C) For disin 0.5 ppm 0 30% of av water is: (A) (C) In water carries so γ = 1.01 (A) (C) A main so population per day. A (A) (C) The minimal aquatic line (A) (C) The pipe j (A) (C) The pipe j (A) (C)	(A) Circle method (C) Equivalent Pipe method (C) Equivalent Pipe method For disinfecting water supply, it 0.5 ppm of chlorine. If the disinfect 30% of available chlorine, the amo water is: (A) 0.833 kg (C) 0.918 kg In water treatment settling unit carries solid particles with averat γ = 1.01 centi stokes. Settling velo (A) 0.027 cm/s (C) 2.73 cm/s A main sewer is to be designed to population density is 200 person per day. Assume peak factor = 3. T (A) 7.934 mlpd (C) 10.0 mlpd At shut off head of a centrifugal pu (A) Maximum (C) Rated Discharge The minimum dissolved oxygen waquatic life is: (A) 1 ppm (C) 4 ppm In the case of surface water with a (A) Alum (C) Lime The pipe joint commonly used in pu (A) Flexible joint (C) Flanged joint	(A) Circle method (C) Equivalent Pipe method (D) For disinfecting water supply, it is required to tree 0.5 ppm of chlorine. If the disinfectant is available in the 30% of available chlorine, the amount of bleaching powater is: (A) 0.833 kg (C) 0.918 kg (D) In water treatment settling unit, water having a carries solid particles with average diameter of 0.05 γ = 1.01 centiles stokes. Settling velocity of settling part (A) 0.027 cm/s (C) 2.73 cm/s (D) A main sewer is to be designed to receive a flow from population density is 200 persons/ha. The average per day. Assume peak factor = 3. The design flow for the control of the c		

29.	The streng	gth of chlorine in fresh bleaching	powder is:			
	(A)	About 60%	(B)	About 10%		
	(C)	About 20%	(D)	About 30%		
30.	sewage di	scharge of 3.5 mld. The sludge removal efficiency of suspended	may be ass	by a secondary settling tank treating umed to have a solid concentration of and the solid content of the sludge as		
	(A)	10.5 cum/day				
	(B)	8.3 cum/day				
	(C)	9.1 cum/day				
	(D)	7.93 cum/day				
31.	The equat	ion used for experimental measu	rement of v	iscosity is:		
	(A)	Darcy equation	(B)	Stokes equation		
	(C)	Fanning equation	(D)	Hagen Poiseuille equation		
32.	Bernoulli	s equation is derived starting fro	m :			
	(A)	Mass Balance	(B)	Force Balance		
	(C)	Momentum Balance	(D)	Energy Balance		
33.	Orificeme	ter is used for measuring :				
	(A)	Pressure	(B)	Flow rate		
	(C)	Density	(D)	Viscosity		
34.	Optical P	yrometer working principle is ba	sed on:			
	(A)	Stefan-Boltzmann law	(B)	Weins displacement law		
	(C)	Kirchoff law	(D)	Plancks law		
35.	Froude n	umber is directly proportional to	:			
	(A)	Impeller speed	(B)	Fluid viscosity		
	(C)	Square of Impeller diameter	(D)	Square of impeller speed		
36.	Centrifug	ing in Ball mills occur when the	speed is:			
	(A)	Equal to Critical speed	(B)	Less than critical speed		
	(C)	Greater than critical speed	(D)	None of the above		
37.	Peclet Nu	umber NPe is the product of :				
	(A) Reynolds Number and Nusselt Number					
	(B)	Reynolds No. and Prandtl No.				
	(C)	Prandtl No. and Nusselt No.				
	(D)	Reynolds No. and Rayleigh No.				
A			7	028/2016 [P.T.O.]		

38.	LMTD cor	rrection factors are used for :					
	(A)	Parallel flow	(B)	Counter Flow			
	. (C)	Cross flow	(D)	All the above three			
39.	Slugging	in fluidized beds occur when :					
	(A)	Particles are large and heavy					
	(B)	The Vessel is narrow and the bed is	s deep				
	(C)	Neither (A) nor (B)					
	(D)	Both (A) and (B)					
40.	Michaelis	- Menten parameters can be evaluat	ed using	g:			
	(A)	Eadie Hoftsee Plot	(B)	Lineweaver Burke Plot			
	(C)	Neither (A) nor (B)	(D)	Both (A) and (B)			
41.	In the CG	S system 1 stoke is defined as:					
	(A)	$1 ft^2/s$	(B)	$1m^2/s$			
	(C)	$1 in^2/s$	(D)	$1 cm^2/s$			
42.	Boiling Po	oint Elevation of solutions strongly in	fluence	s:			
7	(A) Capacity of multiple effect evaporators						
	(B)	Economy of multiple effect evapora	tors				
	(C)	Both capacity and economy					
	(D)	Neither capacity nor economy					
43.	At all hur	nidities other than zero or hundred p	ercenta	ge, percentage humidity is:			
	(A)	Greater than relative humidity	(B)	Equal to relative humidity			
	· (C)	Less than relative humidity	(D)	None of the above			
44.	Many imp	portant fermentation products like an	ntibiotic	s are formed during:			
	(A)	Lag phase	(B)	Growth phase			
	(C)	Stationary phase	(D)	Death phase of cell growth			
45.	Dilution r	rate D for a bioreactor is the reciproca	al of:				
	(A)	Space Time	(B)	Residence Time			
	(C)	Space velocity	(D)	Time constant			
46.	Ficks law	of diffusion is analogous to :					
	(A)	Newtons law of viscosity	(B)	Fouriers law of heat conduction			
	(C)	Both (A) and (B)	(D)	Neither (A) nor (B)			
028	/2016	8					

47.	Temperat	ure dependency of equilibrium con	nstant is pr	redicted by :
	(A)	Vant Hoff Equation	(B)	Clayperon Equation
	(C)	Raoults law	(D)	Arrhenius Equation
48.	In an idea	l PFR, the reactant concentration	:	
	(A)	is uniform within the reactor		
	(B)	varies along the cross section of	the reactor	
	, (C)	varies along the length of the re-	actor	
	(D)	none of the above		
49.	Baffles in	shell and Tube heat exchangers a	re provide	d mainly for :
	(A)	Increasing shell side turbulence	(B)	Increasing tube side turbulence
	(C)	Fixing the tubes	(D)	Fixing the tie rods
50.	Conversion	ns in reversible exothermic reacti	ons can be	improved by:
- 68	(A)	Interstage Heating	(B)	Interstage Cooling
	(C)	Isothermal Operation	(D)	Isobaric operations
51.	Frossling	correlation relates mass transfer	coefficient	with:
	(A)	Particle size	(B)	Particle velosity
	(C)	Mass diffusivity	(D)	All the above three
52.	Knudsen	diffusivity is :		
	(A)	Directly proportional to pressur	e	
	(B)	Independant of pressure		
	(C)	Proportional to square root of pr	ressure	
	(D)	Inversely proportional to pressu	re	
53.	Crushing	Rolls are :		
	(A)	Primary crushers	(B)	Grinders
	(C)	Ultrafine grinders	(D)	None of the above
54.	Different	ial method of analysis of kinetic d	ata is :	
	(A)	Complex but accurate	(B)	Simple and accurate
	(C)	Complex and inaccurate	(D)	Simple and inaccurate
55.	Rate Sele	ctivity parameter is important in	the design	of:
	(A)	Multiple reactions	(B)	Single reactions
	(C)	Elementary reactions	(D)	None of the above
A			9	028/20
4.00				ID T

fb.com/pscnet.in

56. A U-tube manometer is connected to a vessel to measure the pressure inside. If mercithe working fluid of manometer, the height difference between two columns of manometer measured is 24 cm, the pressure inside the vessel in kPa is:				
	(A)	31.9	(B)	49.1
	(C)	3.1	(D)	10.4
57.				O°C. If the specific heat of water is constant specific heat in kJ/kgK is:
	(A)	0.0786	(B)	9.5321
	(C)	98.1773	(D)	0.8958
58.	and exert			e placed normal to its path is 0.06 m ³ /s f water as 1000 Kg/m ³ , the diameter in
	(A)	46	(B)	70
	(C)	38	(D)	97
59.	In order t	o have maximum power f	rom a Pelton turbin	e, the bucket speed must be:
	(A)	Equal to the jet speed	(B)	Equal to half the jet speed
	(C)	Equal to twice the jet sp	peed (D)	Independent of the jet speed
60.	Heat and	work are:		
	(A)	Path functions	(B)	Extensive properties
	(C)	Point functions	(D)	Intensive properties
61.				× 60 cm maintained at 250°C. If the heat transfer took place in kW is:
	(A)	36.6	(B)	14
	(C)	8	(D)	2
62.		ers at 30°C and leaves at		at a temperature of 70°C. The cooling nic mean temperature difference of the
	(A)	24.2°C	(B)	28.8°C
	(C)	20.6°C	(D)	37.5°C
63.	constant			from 100 KPa and 30°C to 5 MPa at a ng the changes in kinetic energy and
	(A)	5	(B)	38
	(C)	232	(D)	84
028/	2016		10	A

fb.com/pscnet.in

64.			cal power of 150 Watts nce of refrigerator is :	and rejects 450	Watts to surrounding
	(A)	1.2	(B)	0.8	
	(C)	3	(D)	2	
65.	Which on	e of the following is a	CFC refrigerant?		
	(A)	R 744	(B)	R 290	
	(C)	R 502	(D)	R 718	
66.	Tooth int	erference in an exterr	nal involute spur gear p	air can be reduce	d by:
	(A)	Decreasing center d	istance between gear p	air	
	(B)	Increasing pressure	angle		
	(C)	Decreasing module			
	(D)	Decreasing number	of gear teeth		
67.	circle dia diameter	meter in the plane	of crossed helical gears of rotation 80 mm and ation 120 mm and hel rpm is:	helix angle 30°.	Gear II: Pitch circle
	(A)	900 rpm	(B)	950 rpm	
	(C)	800 rpm	(D)	850 rpm	
68.	uniform p		r diameters 100 mm a		
	(A)	148 Nm	(B)	490 Nm	
	(C)	372 Nm	(D)	196 Nm	
69.	10 10 10 10 10 10 10 10 10 10 10 10 10 1	uilibrium speed of a e working range, it is	governor is constant for known as:	or all radii of ro	tation of the fly balls
	(A)	Isochronism	(B)	Hunting	
	(C)	Insensitiveness	(D)	Stability	
70.	The gyros inertia is	scopic couple of a susp 0.4 kg-m ² , then the p	pended disc rotating at recession velocity of the	1000 rpm is 15 N disc in rad/sec is	-m and the moment of sclose to:
	(A)	0.35	(B)	35	
	(C)	8.5	(D)	0.0375	
71.	The fract	ion of unbalanced ma	ss used for primary bal	ancing of a recipr	ocating engine is:
	(A)	0.2	(B)	0.9	
	(C)	0.6	(D)	0.05	
A			11		028/2016

fb.com/pscnet.in

72. If the balancing mass of a locomotive wheel is 15 kg acting at a radius of wheel has dead weight of 110 kg, the limiting rotational speed of the wheel is				acting at a radius of 0.7 m when the	
		m rails is close to:	ing rotations	if specia of the wheel in rawies to average	
	(A)	7.1	(B)	6.6	
	(C)	9.7	(D)	8.4	
73.	The cryst:	al structure of austenite is :			
	(A)	Body centered cubic	(B)	Face centered cubic	
	(C)	Hexagonal closed packed	(D)	Body centered tetragonal	
74.	The maximum energy that can be absorbed per unit volume without creating a permandistortion in a material is known as:				
	(A)	Modulus of resilience	(B)	Modulus of toughness	
	(C)	Modulus of rupture	(D)	Modulus of rigidity	
75.	the spind	ss steel rod of 10 mm diameter is le rotates at 360 rpm and the to m³/min is close to:	d being red ol travel rate	uced to 9 mm by turning on a lathe. If e is 175 mm/min, the material removal	
	(A)	1034.6	(B)	2610.8	
	(C)	874.4	(D)	356.9	
76.	The weld	ing processes which uses non-con	sumable ele	ctrode is:	
	(A)	Gas metal arc welding	(B)	Submerged arc welding	
	(C)	Gas tungsten arc welding	(D)	Flux coated arc welding	
77.	Internal	gear cutting operation can be per	formed by:		
	(A)	Milling	(B)	Hobbing	
	(C)	Shaping with pinion cutter	(D)	Shaping with rack cutter	
78.		mped vibrating system, when coefficient, the system is said to		damping coefficient is less than the	
	(A)	Under-damped	(B)	Over-damped	
	(C)	Critically-damped	(D)	Undamped	
79.	If two no	des are observed at a frequency	of 1200 rpm	during whirling of a simply supported	
		der rotating shaft, the first critic			
	(A)	1800	(B)	400	
	(C)	600	(D)	2400	
80.	A thin wa increased the hoop	by 1%, with the internal press	to an intern ure remaini	al pressure. If the radius of the shell is ng the same, the percentage change in	
	(A)	1	(B)	1.25	
	(C)	3	(D)	2	

81.	Who was	the President of Indian Constitu	uent Assembly	y?
	(A)	Dr. B.R. Ambedkar	(B)	Jawaharlal Nehru
	(C)	Dr. Rajendra Prasad	(D)	Sardar Patel
82.	The first a	mendment of Indian Constitut	ion came into	force on :
	(A)	18-6-1951	(B)	18-6-1952
	(C)	18-6-1953	(D)	28-8-1954
83.	In the Par	liamentary system of India, the	e executive is	subordinated to:
	(A)	The voters	(B)	Legislature
	(C)	Media	(D)	None of these
84.	Who is th	e founder of PRDS?		
	(A)	K.P. Yohannan	(B)	Poykayil Srikumara Devan
	(C)	Chattamby Swamy	(D)	Sahodaran Ayyappan
85.	Who help	ed the Vaikom Satyagrahis by o	pening a free	kitchen for them?
	(A)	Bengalis	. (B)	Assamese
	(C)	Akalis	(D)	Kashmiris
86.	The wome	en K.P.C.C. President who lead	the Quit Indi	a and Civil disobedience movements :
	(A)	Fathima Beevi	(B)	Kutty Malu Amma
	(C)	Nafeesath Beevi	(D)	Captain Laxmi
87.	The author	or of the work 'Odakkuzhal' who		
	(A)	Ulloor	100000000000000000000000000000000000000	Vallalhol
	(C)	G. Sankara Kurup	(D)	Akkithom
88.		s the leader to become the ent League?	head of the	Radio Broadcast division of Indian
	(A)	K. Kelappan	(B)	T.K. Madhavan
	(C)	K.P. Kesava Menon	(D)	Vakkom Moulavi
89.	Who visit	ed Mahathma Gandhi at Thiru		
	(A)	Kumaran Asan	(B)	Sree Narayana Guru
	(C)	T.K. Madhavan	(D)	K.P. Kesava Menon
90.	Where w	as the first SNDP meeting conv	0.0000	
	(A)	Aluva	(B)	Varkala
	(C)	Pallana	(D)	Aruvippuram
91.	Birth pla	ce of Saint Kusiako Elias Chav		
	(A)	Kandankasy	(B)	Chennamparampu
	(C)	Kainakary	(D)	Mannanam
A			13	028/2016 [P.T.O.]

92.	Which Ne	ewspaper was founded by Val	kkom Moulavi?	
	(A)	Deshabhimany	(B)	Swadeshabhimani
	(C)	Samvad Kaumudi	(D)	Mathrubhoomi
93.	Kumaran	Asan's Veena Poovu was fire	st published in :	
	(A)	Bhashaposhini	(B)	Mangalodayam
	(C)	Nasrani Deepika	(D)	Prabhatham
94.	Malayali	Memorial Memorandum was	submitted to:	
- 37	(A)	Sree Moolam Thirunal	(B)	Sree Ayilyam Thirunal
	(C)	Sree Avittam Thirunal	(D)	Sree Chithira Thirunal
95.	Which on	e is not a work of Changamp	uzha?	
	(A)	Ramanan	(B)	Rakthapuhspangal
	(C)	Kilikonchal	(D)	Mayookhamala
96.		oric struggle lead by Chatt nt schools occurred in which		l to join scheduled class students to
	(A)	Olakettiyambalam	(B)	Ooruttambalam
	(C)	Vellayambalam	(D)	Vazhiyambalam
97.	How man	y members are there in the F	Kerala legislative	e assembly?
	(A)	140	(B)	141
	(C)	142	(D)	143
98.	What is t		rved for women	in the Kerala local self government
	(A)	33	(B)	40
	(C)	50	(D)	25
99.	Who foun	ded the first college in Kerala	1?	
	(A)	S.N.D.P.	(B)	N.S.S.
	(C)	M.E.S.	(D)	CMS.
100.	Mannath	Padmanabhan was the pres	ident of which I	Devaswom board?
	(A)	Travancore	(B)	Malabar
	(C)	Guruvayoor	(D)	None of the above