PSC Inspector Of Factories And Boilers Grade II - Factories And Boilers Examination Previous Year Question Paper

Exam Name: Inspector Of Factories And Boilers Grade II - Factories And Boilers

Date of Test: 19.04.2016

Question Paper Code: 053/2016

Medium of Questions: English

053/2016

Maximum: 100 marks

Time: 1 hour and 15 minutes

1.	A steel bar 10 mm × 10 mm cross section is subjected to an axial tensile load of 20 kN. If the
	length of bar is 1 m and $E = 200$ GPa, then elongation of the bar is:

(A) 1 mm

(B) 0.5 mm

(C) 0.75 mm

(D) 1.5 mm

The modulus of rigidity and poisson's ratio of a material are 80GPa and 0.3 respectively, Its youngs modulus will be:

(A) 160 GPa

(B) 208 GPa

(C) 120 GPa

(D) 104 GPa

3. The equivalent torque on a shaft, when it is subjected to bending moment M and torque T is :

(A) M+T

(B) $(M^2 + T^2)^{1/2}$

(C) $0.5(M^2 + T^2)^{1/2}$

(D) $0.5 M + (M^2 + T^2)^{1/2}$

4. If the value of poisson's ratio is zero, then it means that:

(A) the lateral strain is high

(B) the material is perfectly plastic

(C) there is no linear strain in the material

(D) none of these

5. The outside diameter of a hollow shaft is twice its inside diameter. The ratio of its torque carrying capacity to that of solid shaft of same material and same outside diameter is:

(A) 3/4

(B) 1/2

(C) 15/16

(D) 1/16

6. Two shafts are made of the same material. The diameter of first is twice that of second. The ratio of power which can be transmitted by first shaft and second is

(A) 1/2

(B) 1/4

(C) 1/8

(D) 1/16

7. A solid shaft is subjected to a bending moment and twisting moment of 3 kNm and 4 kNm respectively. The equivalent bending moment is:

3

(A) 4 kNm

(B) 3 kNm

(C) 3.5 kNm

(D) 4.5 kNm

A

[P.T.O.]

8.	The buck	ing load is maximun							
	(A) one end of the column is fixed and the other end is free								
	(B)	(B) both ends of the column are hinged							
	(C)	both ends of the col	umn are fixed						
	(D)	one end of the colu	mn is hinged and other	end is free					
9.		ling load for a colu	mn hinged at both end	s is 15 kN. If the ends are fixed, t	he				
	(A)	60 kN	(B)	30 kN					
	(C)	45 kN	(D)	3.75 kN					
10.	The Euler	s's load for a column	is 1 MN and crushing lo	ad is 1.5 MN. The Rankine load is:					
	(A)	1 MN	(B)	0.6 MN					
	(C)	1.5 MN	(D)	2.5 MN					
11.		e of bending momer d load over its length		m cantilever beam carrying uniform	ıly				
	(A)	a hyperbola	(B)	a straight line					
	(C)	an ellipse	(D)	a parabola					
12.	Steady flo	w occurs when:							
	(A)	velocity does not ch	ange						
	(B)	pressure does not c	hange						
	(C)	conditions change g	gradually with time						
	(D)	conditions do not cl	nange with time at any I	point					
13.		of centre of pressur e side in line with fre		of 3m deep fully immersed in a liqu	uid				
	(A)	1m	(B)	1.5m					
	(C)	2m	(D)	2.5m					
14.	The press	ure in metres of oil (s	specific gravity 0.85) equ	uivalent to 85 metres of water is:					
	(A)	100 m	(B)	85 m					
	(C)	8.5 m	(D)	none of the above					
15.	Pressure	in P <mark>ascal at a depth</mark> o	of 1 m below the free sur	rface of water will be:					
	(A)	1 pa	(B)	9810 Pa					
	(C)	98.1 Pa	(D)	981 Pa					
053/	2016		4		A				

16.	Rain drop	os are spherical because of :		
	(A)	viscosity	(B)	air resistance
	(C)	surface tension	(D)	atmospheric pressure
17.	In a mul	tiple disc clutch, if n_1 and n_2 are	e number	of discs on driving and driven shaft
	respective	ely, then number of pairs of contact	t surface v	vill be:
	(A)	$n_1 + n_2 - 1$	· (B)	$n_1 + n_2 + 1$
	(C)	$n_1 + n_2$	(D)	$(n_1 + n_2)/2$
18.		eel of moment of inertia 9.8 kgm² fl es. The mean speed of the flywheel		by 30 rpm for a fluctuation in energy of
	(A)	900 rpm	(B)	600 rpm
	(C)	936 rpm	(D)	1200 rpm
19.	The stud	bolt is:		6
	(A)	thread on both ends	(B)	thread on one end without head
	(C)	thread on one end with head	(D)	none of the above
20.	The prod	uct of moment of inertia and angul		
	(A)	angular torque	(B)	kinetic energy
	(C)	angular momentum	(D)	none of the above
21.	In the cas	se of flat pivot bearing the rubbing		
	(A)	maximum at the centre of the con		
	(B)	zero at the centre and maximum		er radius
	(C)	uniform throughout the contact a	irea	
	(D)	zero at the outer radius		
22.				vot bearing for uniform pressure is:
		μWR		$1/3 \mu WR$
	(C)	$2/3 \mu WR$	(D)	$1/2 \mu WR$
23.	Which of	the following is an example of frict	ion clutch	?
	(A)	disc	(B)	cone
	(C)	plate	(D)	all of the above
24.	The mode	ale is defined as the ratio of:		
	(A)	number of teeth to the pitch circl		r
	(B)	pitch circle diameter to number of		
	(C)	circumference of the pitch circle	to number	of teeth
	(D)	none of the above		
				0504004

25.	The prod	uct of module and diametral pitch is eq	ual to	
	(A)	π	(B)	$\pi/2$
	(C)	1.0	(D)	2π
26.			ircle,	which rolls without slipping on a fixed
		ine is known as:		
	(A)	cycloid	(B)	involute
	(C)	epicycloid	(D)	hypocycloid
27.		e axes of the first and last wheels of a nown as:	com	pound gear train are co axial, then the
	(A)	non reverted gear train	(B)	epicyclic gear train
	(C)	reverted gear train	(D)	none of the above
28.	The follow	ver of a cam has:		
	(A)	uniform acceleration and retardation	(B)	cycloidal motion
	(C)	simple harmonic motion	(D)	any one of the above
29.	Which on	e the following is a spring loaded gover	nor?	
	(A)	Proell governor	(B)	Porter governor
	(C)	Watt governor	(D)	Hartnell governor
30.	If the rota mean rad speed will	ius is half mean radius of the former,	tribut	ted on another rim type flywheel whose energy stored in the latter at the same
	(A)	4 times the first	(B)	same as the first
	(C)	one-fourth of the first	(D)	half of the first.
31.		is 20 mm? The plate thickness is	10 m	joint whose pitch is 50 mm and rivet im and permissible tensile stress is
	(C)	12 kN	(B)	24 kN
	(0)	12 KIN	(D)	none of the above
32.	For a sing 100 mm. I	gle v but weld joint the effective throa f the safe stress is 120 N/mm², the perr	t thic	kness is 10 mm and length of weld is de load is equal to:
	(A)	100 kN	(B)	120 kN
	(C)	60 kN	(D)	none of the above
052/	2016			

33.	The tende	ency of knocking i	in CI Engines is a	reduced by	
	(A)	high self- ignition	on temperature o	of fuel	
	(B)	injection of fuel	just before TDC		
	(C)	decrease in inje	ction pressure		
	(D)	decrease in cool	ing water tempe	rature	
34.	Pelton wh	neel is used in the	se places where		
	(A)	high head and l	ow discharge are	available	
	(B)	low head and h	igh discharge are	available	
	(C)	high head and l	nigh discharge ar	e available	
	(D)	none of the abo	ve		
35.	Francis to	urbine is a :			
	(A)	radial flow turb	oine	(B)	axial flow turbine
	(C)	mixed flow turb	pine	(D)	inward flow radial turbine
36.	Diesel cyc	ele consists of :			
	(A)	two adiabatic a	nd two constant	volume pro	cesses
	(B)		nd two constant	and a second second	-
	(C)				constant pressure processes
	(D)	two isothermal,	one constant pre	essure and	one constant volume processes
37.	One ton r	efrigeration is eq	ual to:		
	(A)	210 kJ/min		(B)	110 kJ/min
	(C)	50kJ/min		(D)	none of the above
38.	In sensibl	e cooling process	the relative hum		
	(A)	decreases		(B)	increases
	(C)	remains consta	nt	(D)	none of the above
39.	In psychr	ometric chart, de	w point tempera	ture lines a	re:
	(A)	horizontal			
	(B)	vertical			
	(C)	curved			
	(D)	straight lines s	lopping downwar	ds to the ri	ght
40.	The basic	law of heat cond	uction is:		
	(A)	Fourier's law		(B)	Newton's law
	(C)	Stefan' law		(D)	First law of thermodynamics
A				7	053/2016 [P.T.O.]

41.	If a body	reflects all radiations inci	dent on it, then it i	s known as :	
	(A)	black body	(B)	grey body	
	(C)	white body	(D)	opaque body	
42.	A steel b	oall of mass 1 kg and spo	ecific heat 0.4 KJ/	kg is at a temperature of 60° (C. It i
				tate temperature of water is:	
	(A)	23.5° C	(B)	35° C	100
	(C)	32.5° C	(D)	40°C	
43.	The ratio in the sa called:	of actual mass water vap me mass of dry air when	our in a unit mass it is saturated at	of dry air to the mass of water the same temperature and press	vapou sure i
	(A)	humidity ratio	(B)	relative humidity	
	(C)	absolute humidity	(D)	degree of saturation	
				aspect of basactation	
44.	In psychr	ometric chart, specific hur	nidity lines are :		
	(A)	Vertical	(B)	Horizontal	
	(C)	Inclined	(D)	Curved lines	
45.	The octan	e number of petrol genera	lly available is :		
	(A)	20 to 40	(B)	40 to 60	
	(C)	80 to 100	(D)	100 to 120	
46.	The specif	fic fuel consumption is def	ined as:		
	(A)	fuel consumption per bra			
	(B)	fuel consumption per hou			
	(C)	fuel consumption per hou			
	(D)	fuel consumption per ind	A STATE OF THE PARTY OF THE PAR		
47.	For a four	cylinder in line internal c	ombustion engine.	the most popular firing order is :	
	(A)	1-4-3-2	(B)	1-2-3-4	
	(C)	1-2-4-3	(D)	1-3-4-2	
48.	The brake	power of an IC Engine ha	ving speed 1200 rr	om with torque 15 Nm is:	
	(A)	300 π watts	(B)	450 π watts	
	(C)	150 π watts	(D)	600 π watts	
10	Duonanta				
49.		f materials due to which t			
	(A) (C)	elasticity	(B)	plasticity	
		ductility	(D)	stiffness	
053/	2016		8		A

50.	Property (of cast iron is:		
	(A)	good wear resistance	(B)	good casting characteristic
	(C)	good machinability	(D)	all of these
51.	Iron carbo	on equilibrium diagram :		
	(A)	indicates the phase changes occur	ring duri	ng heating and cooling
	(B)	correlates the microstructure and	propertie	es of steel and cast iron
	(C)	is made by plotting carbon percen	tage and	temperature
	(D)	all of these		
52.	A space la	attice found in α - iron is called :		
	(A)	body centered cubic space lattice	*	
	(B)	face centered cubic space lattice.		
	(C)	close packed hexagonal space latt	ice	
	(D)	none of these		
53.	In a unit	cell of face centered cubic space latt	tice the to	tal number of atoms :
	(A)	9	(B)	14
	(C)	6	(D)	24
54.	Draft on	pattern for casting is:		
	(A)	shrinkage allowance		
	(B)	identification number		
	(C)	for machining allowance		
	(D)	taper to facilitate its removal from	n mould	
55.	Cores are	used to:		
	(A)	make desired recess in castings	(B)	strengthen moulding sand
	(C)	support loose pieces	(D)	remove pattern easily
56.	The purp	ose of chaplets is to:		
	(A)	induce directional solidification	(B)	compensate shrinkage
	(C)	provide bending	(D)	support the core
57.	Seam we	lding is a :		
	(A)	arc welding process	(B)	multi spot welding process
**	(C)	continuous spot welding process	(D)	process used for joining round bars
A		9	,	053/2016
-	196			[P.T.O.]

58.	The consu	ımable electrode is used in :			
	(A)	carbon arc welding	(B)	MIG welding	
	(C)	TIG welding	(D)	thermit welding	
59.	The algeb	raic difference between the maxi	mum limit a	and basic size is called :	
	(A)	upper deviation	(B)	lower deviation	
	(C)	actual deviation	(D)	mean deviation	
60.	Phosphor	bronze has :			
	(A)	high resistance to corrosion			
	. (B)	good wearing qualities and high	h elasticity		
	(C)	valuable cold working property			
	(D)	all the above			
61.	The draw	ing down is a process of :			
	(A)	increasing the cross section of a	bar		
	(B)	reducing the cross section of a l	oar		
	(C)	joining the two surfaces of meta	al under pre	ssure after heating	
	(D)	bending of a bar			
62.	In orthogo	onal cutting system the:			
	(A)	cutting tool prepares a surface	parallel to the	he work face	
	(B)	chip flows over the tool face and	d direction o	f the chip flow velocity is normal to th	6
	(C)	maximum chip thickness occur	s at the mid	dle	
	(D)	all of these			
63.	Continuo	us chips are formed during mach	ining of:		
	(A)	cast iron	(B)	aluminium	
1	(C)	mild steel	(D)	none of these	
64.	The surfa	ce finish is improved by the incre	ease in :		
	(A)	cutting speed	(B)	nose radius	
	(C)	true rake angle	(D)	all of these	
65.	In break	even analysis, total cost consists	of:		
	(A)	fixed cost + sales revenue	(B)	variable cost + sales revenue	
	(C)	fixed cost + variable cost	(D)	fixed cost+ variable cost + profit	
053/	2016		10		4

66.	PERT sta	nds for :		
(A) Programme Estimation and Reporting Techniques			hniques	
	(B)	Process Estimation and Review Te	chnique	
	(C)	Programme Evaluation and Review	v Techni	que
	(D)	Planning Estimation and Resulting	Techni	que
67.	The simp	lex method is the basic method for:		
	(A)	queing theory	(B)	linear programming
	(C)	net work analysis	(D)	none of the above
68.	EOQ star	nds for :		
	(A)	Economic Order Quantity	(B)	Elimination of Quality Inspection
	(C)	Elements of Quality Control	(D)	End of Quality Inspection Change
69.	The syste	m of working known as functional or	ganisati	on was introduced by :
	(A)	Newton	(B)	F.W. Taylor
	(C)	Gilberth	(D)	None of the above
70.	Line orga	nisation is also known as :		
	(A)	functional organisation	(B)	military organisation
	(C)	staff and functional organisation	(D)	none of the above
71.	For civil e	engineering construction, the following	ng type o	of organisation is preferred :
	(A)	line organisation	(B)	functional organisation
	(C)	line and staff organisation	(D)	none of the above
72.	Slack rep	resents the difference between the :		
	(A)	normal expected time and earliest	completi	on time
	(B)	latest allowable time and normal e	xpected	time
	(C)	latest allowable time and earliest e	xpected	time
	(D)	earliest completion time and norma	al expect	ed time
73.	In the net	work diagram :		
	(A)	an activity and an event are repres	ented by	a circle
	(B)	an activity and an event are repres	ented by	an arrow
	(C)	an activity is represented by a circl	e and ev	ent by an arrow

(D) an activity is represented by an arrow and event by a circle

053/2016

74.	ABC anal	ysis:					
	(A) is meant for relative inventory control						
	(B)						
	(C)	does not depend upon the u	mit cost of the it	tem but on its annual consumption			
	(D)	all of the above					
75.	Product la	ayout is suited for :					
	(A)	mass production	(B)	job production			
	(C)	batch production	(D)	none of the above			
76.	Gantt cha	rt is used for :					
	(A)	inventory control	(B)	production schedule			
	(C)	material handling	(D)	all the above			
77.	The main	objective of work measureme	ent is to:				
	(A)	plan and schedule of produc	ction				
	(B)	estimate the selling prices	and delivery dat	es			
	(C)	formulate a proper incentiv	re scheme				
	(D)	all of the above		* * *			
78.	The time	taken for the job from its arr	ival to the syste	m until its departure is			
	(A)	completion time	(B)	flow time			
	(C)	due date	(D)	processing time			
79.	In ABC analysis, the C items are those which represents						
	(A) small percentage of the total annual consumption value						
	(B) high percentage of the total annual consumption value						
	(C) small percentage of closing inventory value						
	(D)	high percentage of closing i	nventory value				
80.	If EOQ is	within the range of the lower	st discounted ra	te offered, then			
	(A)	accept the discount offer an	d order for the r	ninimum in the range			
	(B)		ne ranges of disc	count before taking the decision			
	(C)	reject the discount offer					
	(D)	accept the discount offer an	d order at EOQ	level			
81.	The Ninth	schedule was added to Cons	titution of India	in:			
	(A)	1951	(B)	1959			
	(C)	1975	(D)	1976			

12

82.		the committee appointed by co onstitution?	ngress party w	which proposed the 42nd Amendment of
	(A)	K.C. Pant	(B)	Y.B. Chavan
	(C)	Sardar Swaran Singh	(D)	P.B. Gajendra Gadkar
83.	First Indi	an state to launch Mid day me	al programme	since independence :
	(A)	Kerala	(B)	Tamilnadu
	(C)	Punjab	(D)	Gujarat
84.	Kerala G	ramin Bank is sponsored by :		
	(A)	State Bank of Travancore	(B)	State Bank of India
	(C)	Punjab National Bank	(D)	Canara Bank
85.	City chall	lenge competition is a criterion	for the progra	mme namely:
	(A)	Smart City	(B)	Amrut city
	(C)	JNNURM	(D)	PMSRY
86.	First nati	on to make corporate social res	sponsibility ma	andatory:
	(A)	USA	(B)	UAE
	(C)	Venezuela	(D)	India
87.	Who foun	ded the daily "Al Ameen"?		
	(A)	Vakkom Moulavi	(B)	Mohammed Abdur Rahiman
	(C)	Vaikom Muhammad Basheer	(D)	E Moidu Moulavi
88.	Founder	of "Saiva Prakasha Sabha" :		
	(A)	Thaikat Ayyavu	(B)	Ananda Theerthan
	(C)	Chattanbi Swami	(D)	Vaikunda Swami
89.	Social ref	ormer who advocated "Aanand	a Matham" :	
	(A)	Vagbhatanandan	(B)	Karunakara Guru
	(C)	Brahmananda Siva Yogi	(D)	Nataraja Guru
90.	Author of	"Mariamma" Natakam :		
	(A)	Paremmakkal Thomma Kath	anar	
	(B)	St. Kuriakose Elias Chavara	4	
	(C)	Puthankavu mathan Tharaka	an	
	(D)	Polachirackal Kocheepan Tha	arakan	
91.	Chastity '	Trial of Nambuthiri women the	at prevailed up	to the beginning of 20th century:
	(A)	Anyonyam	(B)	Hiranya Garbham
	(C)	Bhrasht	(D)	Smartha Vicharam
A			13	053/2016
				[P.T.O.]

92.	Guruvayu	r temple thrown open to the depressed	l secti	ons of Hindus in :
	(A)	1932	(B)	1936
	(C)	1946 -	(D)	1947
93.	The histor	rical fiction of Uroob :		
	(A)	Mindappennu	(B)	Sundarikalum Sundaranmarum
	(C)	Ummachhu	(D)	Aniyara
94.	"Puthiya	Manushyan Puthiya Lokam" is a collec	tion o	f essays by :
	(A)	M. Govindan	(B)	Kuttippuzha Krishna Pillai
	(C)	Sukumar Azheekode	(D)	M.N. Vijayan
95.	Head qua	rters of Basel Mission in South India :		
	(A)	Madras	(B)	Mangalore
	(C)	Kozhikode	(D)	Mysore
96.	Who direc	ted the film PK?		
	(A)	Vidhu Vinod Chopra	(B)	Sanjay Gadhvi
	(C)	Rajkumar Hirani	(D)	Bejoy Nambiar
97.	The VYAI	PAM Scam struck in news from the sta	te of:	
	(A)	Maharashtra	(B)	Madhya Pradesh
	(C)	Haryana	(D)	Rajasthan
98.	Sundar Pi	chai from Tamilnadu was designated i	recent	ly as the CEO of:
	(A)	Samsung	(B)	Microsoft
	(C)	Motorola	(D)	Google
99.	Internation	onal Students Day is observed on:		
	(A)	5 September	(B)	15 October
	(C)	17 November	(D)	10 December
100.	Who amor	ng the following won four Grand slams	in a c	alendar year?
	(A)	Rafael Nadal	(B)	Novak Djokovic
	(C)	Roger Federer	(D)	Pete Sampras