PSC Technical Assistant - Drugs Control Examination Previous Year Question Paper

Exam Name: Technical Assistant - Drugs Control

Date of Test : 01.07.2015

Question Paper Code: 124/2015

Medium of Questions: English

fb.com/pscnet.in

124/2015

Maximum: 100 marks

Time: 1 hour and 15 minutes

1. The total number of atoms in 6 grams of water is :

(A)	$6.02 imes10^{23}$	(B)	12.04×10^{23}
(C)	$18.06 imes 10^{23}$	(D)	$3.01 imes 10^{23}$

2. The percentage of an element M is 53 in its oxide of molecular formula M₂O₃. It's atomic mass is about :

(A)	36	(B)	27	
(C)	18	(D)	23	

3. The mass of oxygen required for the complete combustion of 2.5 grams of methane is :

(A)	20 g	(B)	15 g	
(C)	1.5 g	(D)	10 g.	

4. An organic compound with vapour density 28 on analysis gave 85.71% carbon and 14.29% hydrogen. Its molecular formula is :

(A)	$C_{3}H_{8}$	(B)	C_3H_6
(C)	C_4H_8	(D)	C_4H_{10}

5. The enthalpy change for the reaction $\frac{1}{2}X_2(g) \rightarrow X(g)$ is called :

- (A) enthalpy of transition (B) enthalpy of atomization
- (C) enthalpy of vaporization (D) enthalpy of formation
- 6. Lattice energy is the amount of energy released :
 - (A) when one cation combines with one anion
 - (B) when one mole cations combines with one mole anion
 - (C) when one mole of ionic compound is formed from its cations and anions
 - (D) all of the above
- 7. Energy required to dissociate 4 grams of gaseous hydrogen into free gaseous atoms is 208 kcal at 25°C. The H H bond energy will be :

(A)	104 kcal	(B)	10.4 kcal	
(C)	1040 kcal	(D)	1.04 kcal	

A

[P.T.O.]

fb.com/pscnet.in

8. The bond angles in molecules BeF_2 , SF_6 , CCl_4 and NH_3 are in the order :

(A)	$\mathrm{SF}_6 < \mathrm{CCl}_4 < \mathrm{NH}_3 < \mathrm{BeF}_2$	(B)	$SF_6 < NH_3 < CCl_4 < BeF_2$
(C)	$\mathrm{NH_3} < \mathrm{SF_6} < \mathrm{CCl}_4 < \mathrm{BeF}_2$	-(D)	$\mathrm{NH_3} < \mathrm{CCl}_4 < \mathrm{SF}_6 < \mathrm{BeF}_2$

9. The molarity of a solution obtained by mixing 50 ml of 0.40 M HCl and 50 ml of 0.20 M NaOH is :

(A)	0.20 M	(B)	0.10 M
(C)	0.01 M	(D)	0.02 M

10. In XeF_6 molecule, the hybridization of Xe atom is :

(A)	sp^3	(B)	sp ³ d	
(C)	$sp^{3}d^{3}$	(D)	dsp^2	

11. Isopropyl bromide when treated with metallic sodium in ether gives :

(A)	n-Hexane	(B)	2, 2-Dimethyl propane	
(C)	2-Methyl pentane	(D)	2, 3-Dimethyl butane	

12. The gas liberated at cathode during the electrolysis of sodium propionate is :

(A)	Hydrogen	(B)	Carbon dioxide
(C)	Ethane	(D)	n-Butane

13. But-1-ene and 2 – Methyl propene illustrate :

- (A) Chain isomerism (B) Position isomerism
- (C) Metamerism (D) Functional isomerism

14. Ozonolysis of 2-Methyl-2-butene gives :

- (A) Acetone (B) Acetaldehyde
- (C) Glyoxal (D) Acetone and Acetaldehyde

15. The pair which can be distinguished by ammoniacal cuprous chloride solution is :

- (A) But-1-yne and Ethyne (B) But-1-yne and But-2-yne
- (C) Propyne and Ethyne (D) n-Butane and But-2-yne

16. The monomer of Orlon is :

- (A) $CH_2 = CF_2$
- (C) $CH_2 = CH CN$

124/2015

4

Join PSC WhatsApp Broadcast List : 90747 20773

(B) $CF_2 = CF_2$

(D) $CH_2 = CH - Cl$

A

fb.com/pscnet.in

1.101					
17.	Benzene	when treated with phosge	ne in presence of A	ICl ₃ gives :	
	(A)	Benzaldehyde	(B)	Benzyl chloride	
	(C)	Benzophenone	(D)	Benzal chloride	
18.	Hydroxyl	ation of Alkenes can be ef	fected by :		1
	(A)	Luca's Reagent	(B)	Baeyer's Reagent	
	(C)	Tollens Reagent	(D)	Borsche Reagent	
19.	Which of	the following acids has th	e lowest pKa value	?	
	(A)	Acetic acid	(B)	lpha -Chloro acetic acid	
	(C)	lpha -Nitro acetic acid	(D)	lpha -Cyano acetic acid	
20.		ersion of carboxylic acid of concentrated sulphuric		ne by reaction with hyd	lrazoic acid ir
	(A)	Schmidt Reaction	(B)	Dakin Reaction	Second Street
	(C)	Perkin Reaction	(D)	Etard Reaction	
21.	Pyrolysis	of calcium acetate gives :			
	(A)	Formaldehyde	(B)	Acetaldehyde	
	(C)	Acetone	(D)	Acetic acid	
22.	Wolff-Kis	hner Reduction of acetoph	enone gives :		
	(A)	Toluene	(B)	Ethyl Benzene	and states in
	(C)	Xylene	(D)	Cumene	
23.	Which of	the following compounds o	an give Butan-2-ol	with CH ₃ MgBr?	
	(A)	H – CHO	(B)	$CH_3 - CHO$	
	(C)	$\rm CH_3-\rm CH_2-\rm CHO$	(D)	$CH_3 - CO - CH_3$	
24.	The produ	act obtained when an aldo	xime is treated wit	h phosphorous pentoxide	is:
<u> </u>	(A)	Alkane	(B)	Primary amine	
	(C)	Nitrile	(D)	Amide	
25.	The numb	er of bridging hydrogen a	toms in Diborane is	ı:	
	(A)	2	(B)	4	1
	(C)	3	(D)	6	1
A			5		124/2015

124/2015 [P.T.O.]

(C)

300 days

fb.com/pscnet.in

A

26.	The half- 15 g out o	Well a start and an and a start of the	a radioactive eler	ment is 100 day	s. How long	will it take f	or the deca	y of
	(A)	200 days	And the first	(B)	600 days			

(D) 400 days

27. The pH of a solution obtained by mixing 50 ml of 0.40 N HCl and 50 ml of 0.20 N NaOH is :

(A)	3	(B)	2
(C)	1 *	(D)	log 2

28. Quantity of electricity in coulombs required to liberate 112 ml of H₂ gas at N.T.P. is :

(A)	4825 C	(B)	96500 C
(C)	1930 C	(D)	965 C

29. If x_1 and x_2 are the molefractions of solvent and non-volatile solute and P° and P are the vapour pressures of solvent and solution, then according to Raoult's law :

(A)	$P = P^{\circ} \left(1 - x_2 \right)$		(B)	$P^{\circ} = x_1 . P$
(C)	$P - P^{\circ} = x_1 - x_2$	A. C. M.	(D)	$(P^{\circ} - P) / P^{\circ} = x_1 / x_2$

30. At extremely high pressure, the van der Waal's equation for 1 mole a real gas may be written as :

(A)	PV = RT - a/V	(B)	PV = RT + P.b
(C)	PV = RT - P.b	(D)	(P + a) (V - b) = RT

31. Potassium crystallizes with bcc lattice. The number of atoms in a unit cell is :

(A)	1	(B)	8	
(C)	4	(D)	2	

32. In the Borax bead test, the colour of metaborate beads of copper is :

(A)	Blue		(B)	Green	
(C)	Pink		(D)	Red	

33. The oxidation number of carbon in carbon suboxide is :

(A)	+ 2/3	A A A A A A A A A A A A A A A A A A A	(B) +4/3
(C)	- 4/3		(D) – 2/3

124/2015

6

fb.com/pscnet.in

	(A)	the following is not a bidentat			
		Ethylene diammine	(B)	1, 10-Phenantroline	
	(C)	Pyridine	(D)	Glycinate ion	
35.	Which of	the following isomeric alcohol	s has the highe	st boiling point?	5
	(A)	n-Butyl alcohol	(B)	iso-Butyl alcohol	
	(C)	sec-Butyl alcohol	(D)	t-Butyl alcohol	
36.	The num	per of proton NMR signals for	p-Nitro toluen	e is :	
	(A)	2	(B)	5	
	(C)	4	(D)	3	
37:	The carbo	on-carbon double bond stretchi	ing frequency v	vill be highest in :	
	(A)	Cyclohexene	(B)	1, 3-Cyclohexadiene	
	(C)	Benzene	(D)	Same in all	
38.	The reage	ent which can reduce Nitroben	zene into Azob	enzene is :	
	(A)	Zn/HCl	(B)	Zn/NaOH (MeOH)	
	(C)	Zn/NH ₄ Cl	(D)	Zn/NaOH (H ₂ O)	
39.	Amines ca	an be estimated using a stand	ard solution of		
	(A)	Sodium hydroxide			
	(B)	Potassium permanganate			
	(C)	Hydrochloric acid			
	(D)	Sodium carbonate			
40.	Which of	the following shows Carbyl an	nine Test :		
	(A)	iso-Propyl amine	(B)	Aniline	
1.	(C)	o-Toluidine	(D)	All of the above	
41.	Picric acid	l is :			
	(A)	Trinitro benzene	(B)	Trinitro toluene	
	* (C)	Trinitro phenol	(D)	Tribromo phenol	
42.	2. Contraction of the second second	nosetting plastic obtained by	y the polymer	ization reaction between phenol	and
	(A)	Bakelite	(B)	Teflon	
	(0)	Melamine	(D)	None of the above	
	(C)	Michanimo			
A	.(0)		7		2015

Join PSC WhatsApp Broadcast List : 90747 20773

1.

fb.com/pscnet.in

The condensation product of Chloroform with Acetone is : 43. (B) Chloretone (A) Chloropicrin Chloroprene Chloroquine (C) (D) Freon-112 is: 44. (A) $C_2Cl_4F_2$ (B) CCl_2F_2 (C) $C_2Cl_2F_4$ CCIF₃ (D) The enzyme which converts starch into maltose is : 45. (B) Invertase (A) Zymase Diastase (D) Maltase (C) Chlorination of benzene in presence of sunlight gives : 46. Hexachloro benzene Chloro benzene (B) (A) Benzene hexachloride (C) Benzyl chloride (D) The heat evolved when 0.50 mole HCl is mixed with 0.20 mole NaOH solution will be : 47. 14.3 kJ 57.1 kJ (B) (A) (C) 11.42 kJ 1.14 kJ (D) The heats of formation of $CO_{(g)}$ and $CO_{2(g)}$ are - 26.4 kcal/mole and - 94 kcal/mole 48. respectively. The heat of combustion of CO will be : (A) + 26.4 kcal (B) + 94 kcal - 120.4 kcal (C) -67.6 kcal (D) The Henderson equation for the pH of an acidic buffer solution is : 49. (A) $pH = pKa + \log [(salt)/(acid)]$ (B) $pH = pKa + \log [(acid)/(salt)]$ (C) $pH = pKa - \log [(salt)/(acid)]$ (D) pH = pKa - log [(acid)/(salt)]In a process $\Delta H = 100$ kJ and $\Delta S = 100$ J/K/mol at 400K. Then the value of ΔG will be : 50. 100 kJ (A) (B) zero 50 kJ (D) 60 kJ (C) 8 124/2015 A

fb.com/pscnet.in

,

51.	For a gas	seous reaction $X_{(g)} + Y_{(g)} \rightarrow 4Z_{(g)}$	$_{\rm g)},\ \Delta E$ at 30	00° K is 20 k cal. ΔH for the reaction
•	will be :			
	(A)	21.2 k.cal	(B)	18.8 k.cal
	(C)	19.4 k.cal	(D)	20 k.cal
52.	Which of	the following conditions will alv	vays lead to a	a spontaneous change?
	(A)	$\Delta H = +ve \text{ and } \Delta S = +ve$	(B)	$\Delta H = -$ ve and $\Delta S = +$ ve
	(C)	$\Delta H = + \text{ve and } \Delta S = - \text{ve}$	(D)	$\Delta H = -\text{ve and } \Delta S = -\text{ve}$
53.	During α	-decay N/P ratio :		
	(A)	Increases	(B)	Decreases
	(C)	Remains constant	(D)	May increase or decrease
F.A.	A	. C	-6 II	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
54.			of Oranium	and Lead $(t\frac{1}{2} \text{ for } U = 4.5 \times 10^9 \text{ years}).$
	10-05-00	age of the rock would be :		
	(A)	4.5×10^9 years	(B)	2.25×10^9 years
	(C)	9×10^9 years	(D)	13.5×10^9 years
55.	The most	abundant element on earth's cr	ust is :	
	(A)	Hydrogen	(B)	Silicon
	(C)	Nitrogen	(D)	Oxygen
56.		to Bragg's equation, to get between the planes must be :	maximum ii	ntensity for first order reflection the
	(A)	2	(B)	2/2
	(C)	22	(D)	λ/4
57.	Which of t	he following nucleus has magic	number of p	rotons and neutrons?
	(A)	₂ He ⁴	(B)	$_{20}\mathrm{Ca}^{41}$
	(C)	$_{50}\mathrm{Sb}^{186}$	(D)	82Pb ²⁰⁸
58.	The numb	er of particles emitted when $_{90}$	Th ²³² change	s to ₂₀ Pb ²⁰⁸ is :
	(A)	$4\alpha, 6\beta$	(B)	$6\alpha, 4\beta$
				$8\alpha, 6\beta$
	(0)	$6\alpha, 2\beta$	(D)	
A			. 9	124/2015 [P.T.O.]

fb.com/pscnet.in

	1	and the second second		
59.	87.5% of completed		pleted in 36 m	inutes. When was 50% of the decay
	(A)	24 Minutes	(B)	18 Minutes
	(C)	9 Minutes	(D)	12 Minutes
60.	The amou	nt of NaOH in grams requir	ed to prepare 1 l	iter of 0.01 M solution :
	(A)	0.20	(B)	0.40
1	(C)	2	(D)	4
. 61.	Which of	the following species is not a	mphoteric?	
•	(A)	HCO ₃ -	(B)	HSO3-
	(C)	HPO ₄ -	(D)	HPO ₃ -
62.	The ratio	of (Kp/Kc) for the hypothetic	al reaction, 2AB	$A_{2(g)} \rightleftharpoons A_{2(g)} + 3B_{2(g)}$ is :
	(A)	RT	(B)	(RT) ²
	(C)	1/RT	(D)	(RT) ^{1/2}
63.		current passed for 20 seconvalency of the ion is :	nds deposit 0.06	58 g of an ion whose atomic weight is
	(A)	3	(B)	2
	(C)	1 ((D)	4
64.	The Calon	nel electrode is :		
	· (A)	$Pt - Hg/Hg^{2+}$	(B)	Ag/Ag ⁺
	(C)	$\mathrm{Pt}-\mathrm{Hg}/\mathrm{Hg}_{2}\mathrm{Cl}_{2}-\mathrm{Cl}^{-}$	(D)	$Ag/AgCl_{(s)} - Cl^-$
65.	For a cell	reaction, $Zn(s) + Mg^{2+}(C = 0)$	$0.10) \rightleftharpoons Zn^{2+} (C$	= 1) + Mg(s),the e.m.f has been found
		12 volts. Then the standard e		
	(A)	0.2903 volts	(B)	- 0.2312 volts
-	(C)	0.2607 volts	(D)	0.02312
66.		e calcium carbonate was for The concentration of HCl solu		0 ml dilute HCl solution for complete
	(A)	4 N	(B)	0.40 N
	(C)	2 N	(D)	0.20 N
124/	2015		10	Α

A

fb.com/pscnet.in

67.	Which of of K ₄ [Fe(sure 1	nearest to that of an equimolar solution
	(A)	$C_{12}H_{22}O_{11}$	(B)	$Al_2(SO_4)_3$
	(C)	Na_2SO_4	(D)	BaCl ₂
68.		order rate constant 'k' is related to ten pair of values is correct :	nperat	ture as log k = $15 - 10^6$ /T. Which of the
	(A)	$A=10^{15}~and~E=1.9\times10^{4}~kJ$		
	(B)	$A = 10^{15} \text{ and } E = 40 \text{ kJ}$		
	(C)	$A=10^{-15}~and~E=40~kJ$		
1.	(D)	A = 10^{-15} and E = 1.9×10^4 kJ		
69.	The volum H_2O_2 is :	me of oxygen at N.T.P obtained from	n the	decomposition of 1 liter 100 volume
	(A)	100 liter	(B)	10 liter
	(C)	1 liter	(D)	200 liter
70.	Permutit	is the commercial name for :		
	(A)	Sodium calcium silicate	(B)	Calcium aluminium silicate
	(C)	Sodium fluoro silicate	(D)	Sodium aluminium silicate
71.		of a carbohydrate with empirical for formula will be :	mula	CH_2O contains 1 g. of hydrogen. Its
	(A)	$C_{5}H_{10}O_{5}$	(B)	$C_{6}H_{12}O_{6}$
	(C)	$C_4H_8O_4$	(D)	$C_3H_6O_3$
72.	Super oxi	des contain :		
	(A)	O^{2-} ions	(B)	O_2^{2-} ions
	(C)	O ₂ - ions	(D)	O^- ions
73.	The type of	of glass possessing low coefficient of the	ermal	expansion is :
	(A)	Soda glass	(B)	Pyrex glass
	(C)	Flint glass	(D)	Hard glass
74.	Identify tl	he fat-soluble vitamin :		
1	(A)	Thiamine	(B)	Nicotinic acid
	(C)	Ascorbic acid	(D)	Calciferol
			1	

11

124/2015 [P.T.O.]

1

1

fb.com/pscnet.in

75.	(A)	almia is caused by the de Vitamin A		· (B)	Vitamin D
	(A) (C)	Vitamin C		(D)	Vitamin K
	(0)			(1)	· · · · · · · · · · · · · · · · · · ·
76.		ber of degrees of freedom m with ammonia and hyd			em in which ammonium chloride is in 11d be :
	(A)	Zero		(B)	One
	(C)	Two		(D)	Three
77.	The temp	erature at which two crys	stalline forms	are ir	n equilibrium is called :
	(A)	Transition point		(B)	Melting point
	(C)	Eutectic point		(D)	Triple point
78.	Which of	the following pair forms a	n ideal solut	ion?	
	(A)	Pyridine – Water		(B)	Ethyl alcohol – Water
	(C)	Benzene – Acetic acid		(D)	Benzene – Tolune
79.	An examp (CST) is :	le for a partially miscibl	e liquid syste	em wit	th lower Critical Solution Temperature
	(A)	Phenol-Water		(B)	Aniline-Water
1	(C)	Aniline-Hexane		(D)	Diethyl amine-Water
80.	The heter	ocyclic ring system prese	nt in the alka	loid Q	uinine is :
1	(A)	Piperidine		(B)	Pyrolidine-Pyridine
	(C)	Quinoline		(D)	Isoquinoline
81.	The reduc	tion product of Citral wit	h Na(Hg)/Alo	ohol is	s:
	(A)	p-Cymene		(B)	Geraniol
	(C)	Geranic acid		(D)	Levulinic acid
82.	The princi	pal constituent of Turper	ntine oil is :		
	(A)	Camphor		(B)	Menthol
	(C)	α -Pinene	1	(D)	Zingiberene
83.	Which of t	he following is a purine b	ase present i	n nucl	leic acid?
	(A)	Thymine	1	(B)	Cytosine
	(C)	Uracil		(D)	Guanine
			12		

fb.com/pscnet.in

- Lactose is a disaccharide made up of : 84.
 - (A) Glucose and Fructose

(B) /Two glucose units

(C) Two galactose units (D) Glucose and Galactose

85. Arrange the following nucleophiles in the decreasing order of their nucleophilicity $NH_{2^{-}}$, NH_{3} , $C_{2}H_{5^{-}}NH_{2}$, $C_{6}H_{5^{-}}NH_{2}$

- $NH_{2} > NH_{3} > C_{2}H_{2} NH_{2} > C_{6}H_{2} NH_{2}$ (A)
- (B) $NH_{2^-} > C_2H_{5^-}NH_2 > NH_3 > C_6H_{5^-}NH_2$
- (C) $NH_{2} > NH_{3} > C_{6}H_{2} NH_{2} > C_{2}H_{2} NH_{2}$
- (D) $NH_{0-} > C_{2}H_{-}NH_{2} > C_{6}H_{-}NH_{2} > NH_{3}$

 $S_N 1$ mechanism operates in the hydrolysis of : 86.

(A)	t-Butyl chloride		(B)	methyl chloride
(Ĉ)	ethyl chloride		(D)	iso-Propyl chloride

- Temporary hardness of water is due to the presence of : 87.
 - Chlorides of Ca and Mg (B) Bicarbonates of Ca and Mg (A)
 - Sulphates of Ca and Mg (C)

88. A sulphide ore of Iron is :

- Magnetite (B) Haematite (A)
- (C) Limonite (D)
- The most covalent aluminium halide is : 89.
 - (A) Aluminium chloride (B)
 - (C) Aluminium fluoride

The crystal system defined by a = b = c and $\alpha = \beta = y \neq 90^{\circ}$ is called : 90.

- Triclinic (A) Rhombohedral (B)
- (C) Orthorhombic (D) Tetragonal

For the reaction $A \rightarrow Product(s)$ when the concentration of A is doubled, the rate becomes 91. 8 times. The order of the reaction is :

(A)	4			(B)	1
(C)	3			(D)	2

13

124/2015 [P.T.O.]

Join PSC WhatsApp Broadcast List: 90747 20773

- - Iron pyrites
 - Aluminium bromide

(D) Nitrates of Ca and Mg

(D) Aluminium iodide

fb.com/pscnet.in

A

92.	The pH of	a 1×10^{-5} M solution o	f NaOH is :	the providence of the second				
	(A)	5	(B)	9	1 x			
4	(C)	7	(D)	12				
93.	Which of the following molecules has the largest RMS velocity?							
	(A)	H ₂ S	(B)	NH ₃				
	(C)	CO ₂	(D)	SO ₂				
94.	Adsorption isobar is a plot of amount adsorbed against :							
	(A)	Temperature	(B)	1/Temperature				
	(C)	Pressure	(D)	Volume				
95.	Smoke is	a dispersion of :			and the state of			
	(A)	Solid in Gas	(B)	Liquid in Gas	real of the second			
	(C)	Gas in Gas	(D)	Gas in Solid				
96.	Iodoform	cannot be prepared from	m :					
	(A)	CH ₃ CHO	(B)	CH ₃ CH ₂ OH				
	(C)	CH ₃ OH	(D)	CH ₃ CH(OH)CH ₃				
97.	Steel is he	eated to red hot and is	rapidly cooled by dipp	ing in water. This trea	tment is called			
	(A)	Tempering	(B)	Anealing				
	(C)	Quenching	(D)	Hardening	in deside .			
98.	Pure gold	is:						
	(A)	18 carat	(B)	22 carat				
	(C)	26 carat	(D)	24 carat				
99.	9. The flame colour of Lithium metal is :							
	(A)	Yellow	(B)	Blue				
	(C)	Violet	(D)	Red				
100.	Iodine oxi	dizes thiosulphate ion	to:					
	(A)	Sulphite	(B)	Dithionate				
	(C)	Tetrathionate	(D)	Sulphate	1			
				and the state of the state				

124/2015

14