PSC Assistant Engineer Mechanical - Plantation Corporation Of Kerala Ltd Examination Previous Year Question Paper

Exam Name: Assistant Engineer - Mechanical - Plantation Corporation Of Kerala Ltd

Date of Test: 07.07.2015

Question Paper Code: 128/2015

Medium of Questions: English

128/2015

Maximum: 100 marks

Time: 1 hour and 15 minutes

				Time.	I nour and 10 minut
1.	The stud	ly which used to find a simple	r, easier a	nd better way	of performing a job.
	(A)	Motion study			
	(B)	Time study			
	(C)	Time and motion study			
	(D)	None of the above			
2.	The critic	eal path in PERT is determined or	n the basis o	of:	
	(A)	Maximum float of the each activ	vity motion	study	
	· (B)	Minimum float of each activity			
	(C)	Slack of each event			
	(D)	All of each above			
3.	The direc	t cost required to complete the ac	tivity in noi	rmal time durati	on is known as :
	(A)	Normal cost	(B)	Minimum cost	
	(C)	Crash cost	(D)	None of the abo	ove
4.	ABC anal	ysis deals with :			
	(A)	Analysis of process chart	(B)	Controlling inv	entory material
	(C)	Flow of material	(D)	None of the abo	ove
5.	Critical p	ath is that sequence of activities l	between the	start and finish	
	(A)	Shortest time	(B)	Normal time	
	(C)	Longest time	(D)	None of the abo	ove
6.		ginal cost, $S = \text{scrap value}$, $D = \text{seful life}$, Then:	depreciatio	n charges per ye	ar and $N = \text{number } 0$
	(A)	C = (S - D)/N	(B)	D=(S-C)/N	
	(C)	S = (D - N)/C	(D)	D=(C-S)/N	
7.		– is a scale plan on which movem	ents of an o	bject are traced l	by lines.

(A) Process diagram

(C) Line diagram

(B)

Block diagram

Flow diagram

8.					ination of companies resources towards		
		ment of its production g		st effic	cient manner.		
	(A) Process layout and control						
	(B)	Financial planning and	d control				
	(C)	Production planning a	nd control				
	(D)	Plant layout and contr	ol				
9.		Q is 200 numbers and t ber of order / annum wi		sumpt	ion rate of a product is 1000. Then the		
	(A)	5		(B)	4		
	(C)	6		(D)	12		
10.	PERT sta	nds for :					
	(A)	Planning Evaluation a	nd Recalling To	echnic	que		
	(B)	Programme Evaluation	n and Review T	echni'	que .		
(C) Planning Evaluation and Review Technique					e		
	(D)	Process Evaluation and	d Review Techn	nique			
11.	CPM is th	ne:		•			
	(A)	Event oriented techniq	lue	(B)	Target oriented technique		
	(C)	Activity oriented techn	nique	(D)	Time oriented technique		
12.	Choose th	e wrong statement :					
	(A)	Break even analysis co	nsist of fixed a	nd va	riable costs		
	(B)	Break even analysis re	presents the re	elation	nship between cost and volume		
	(C)	At the break even poin	t, total cost is	equal	to sales revenue		
	(D)				break even analysis shows profit		
13.	The engin		inimising the c	eost w	ithout change in quality of the product		
	(A)	Network engineering		(B)	Value engineering		
	(C)	Product engineering		(D)	Quality engineering		
14.	Which of t	the following methods ar	re used to solve	linea	r programming problems?		
	(A)	Simplex method		(B)	Graphical method		
	(C)	Transportation method	l	(D)	All of the above		
128/	2015	1	4		A		

15.	The most	important function of inventor	y control is:	
	. (A)	Technical responsibility for th	e state of ma	terials
	(B)	Stock control		
	(C)	Effective operation of stores		
	(D)	All of the above		
16.		unt of time by which an activit	y can be dela	yed without increasing the completion
	(A)	Float	(B)	Stack
	(C)	Dummy	(D)	All of the above
17.	The temp	erature at which the new grains	s are formed	in the metal is known as:
	(A)	Eutectic temperature	(B)	Recrystallisation temperature
	(C)	Lower critical temperature	(D)	Upper critical temperature
18.	Choose th	ne Mechanical property from the	following:	
	(A)	Permeability	(B)	Resistivity
	(C)	Ductility	(D)	Thermal expansion
19.	Infinitely	repeated fundamental grouping	g of atoms in	a crystal structure is called :
	(A)	Crystallisation	(B)	Unit cell
	(C)	Unit atom	(D)	None of the above
20.	Eutectoid	steel contains carbon:		
	(A)	Equal to 0.8%	(B)	Greater than 0.8%
	(C)	Less than 0.8%	(D)	Equal to Zero%
21.	The Copp	er - Tin alloys are known as :		
	(A)	Brass	(B)	Bronze
	(C)	Bell metal	(D)	Soldering Lead
22.	Which of	the following is a Non-Destructi	ve test?	
	(A)	Tensile test	(B)	Compressive test
	(C)	Impact test	(D)	X-ray test
23.	Which of	the joining process is best suited	l to fabricate	pipelines that carries gas products?
	(A)	Nuts and Bolts	(B)	Rivetting
	(C)	Welding	(D)	Soldering
A			5	128/2015 [P.T.O.]

24.	Glass is a	——— Material.		
	(A)	Elastic	(B)	Ductile
	(C)	Brittle	(D)	Malleable
25.	The abilit	y of a solid material to exist in more t	han on	e form or crystal structure:
	(A)	Polysystem	(B)	Polymorphism
	(C)	Polymerism	(D)	All of the above
26.	If the cutt	ting edge of the tool is perpendicular t	o the d	irection of tool travel, it is known as:
	(A)	Oblique cutting	(B)	Three dimensional cutting
	(C)	Orthogonal cutting	(D)	All of the above
27.	During m	achining cast iron produces :		
	(A)	Continuous chips	(B)	Dis-continuous chips
	(C)	Continuous chips with built-up edge	(D)	None of the above
28.	Tool life is	s depends on :		
	(A)	Tool material	(B)	Hardness of material
	(C)	Type of material being cut	(D)	All of the above
29.	Lead scre	w with half nuts in a lathe free to rota	te in b	oth directions has:
	(A)	Whitworth threads	(B)	V-threads
	(C)	ACME threads	(D)	Buttress threads
30.	Twist dril	l is a:		
	(A)	End cutting tool	(B)	Front cutting tool
	(C)	Side cutting tool	(D)	None of the above
31.	From the	following, which term is connected wi	th shap	ping machine?
	(A)	Gear cutting mechanism	(B)	Quick return mechanism
	(C)	Lead screw mechanism	(D)	Half nut mechanism
32.	Feed drive	es in CNC machines is provided by:		
	(A)	Stepper motors	(B)	Induction motors
	(C)	Synchronous motors	(D)	Servo motors
33.	Ratio of w	eight of a liquid to unit volume is term	ned as	
	(A)	Density	(B)	Specific gravity
	(C)	Specific weight	(D)	Viscosity
128/	2015	6		A

34. "Whenever a body is immersed fully or partially in a fluid, the resultant force a equal to the difference between the upward pressure of the fluid on its bod downward force due to gravity". This is known as:				
	(A)	Pascal's law	(B)	Archimedes principle
	(C)	Newton's law	(D)	Bernoulli's theorem
35.		emains same, while particle moves f		inuous stream, the total energy of a osition to the other. This statement is
	(A)	Bernoulli's principle	(B)	Newton's principle
	(C)	Pascal's law	(D)	Archimedes principle
36.		V_2 be the velocities at initial and find dden enlargement in pipe can be deter		ions respectively, then the loss of head by:
	(A)	$(V_1-V_2)/2g$	(B)	$(V_1 - V_2)^2 / g$
	(C)	$(V_1^2 - V_2^2)/2g$	(D)	$(V_1 - V_2)^2 / 2g$
37.	Absolute	pressure is the algebraic sum of:		
	(A)	Atmospheric pressure and vaccum p	ressure	e
	(B)	Gauge pressure and vaccum pressur	e	
	(C)	Atmospheric pressure and gauge pre	essure	
	(D)	None of the above		
38.	The Darcy	y-Weisbach equation for loss of head c	an be e	expressed mathematically:
	(A)	$hf = (4fvl^2)/2gd$	(B)	$hf = (4flv^2)/2gd$
	(C)	$hf = (4lvf^2)/2gd$	(D)	None of the above
39.	For a pipe	e flow, the ratio of inertia force to visco	ous for	ce is given by :
	(A)	Mach number	(B)	Prandl number
	(C)	Weber number	(D)	Reynolds number
40.	The head	against a centrifugal pump has to wor	rk is kı	nown as:
	(A)	Manometric head	(B)	Friction head
	(C)	Barometric head	(D)	Pressure head
41.	Slip is a t	erm associated with :		
	(A)	Centrifugal pump	(B)	Submersible pump
	(C)	Reciprocating pump	(D)	Jet pump

	Cavitati	on will take place if the	e pressure of the mo	WIII	ig ilquid at any point is:
	(A)	More than the vapo	ur pressure of the li	iqui	d
	(B)	Less than the vapou	ar pressure of the lie	quid	1
	(C)	Equal to the vapour	pressure of the liqu	uid	
	(D)	None of the above			
43.	Which of	the turbine is suitable	e for "high head and	llov	v discharge"?
	(A)			(B)	Kalpan turbine
	(C)	Francis turbine		(D)	Pelton turbine
	TC				
44.		pecific weight of water sectional area of a jet			
		city of jet, then,	anu,		
			vater impinging nor	ma	lly on a fixed plate is given by :
		$F = waV^2/g$			
					$F = waV^2/2g$
	(0)	F = waV/g	(D)	F = waV/2g
45.	Choose fr	om the following that	which term is not co	onn	ected to a water turbine?
	(A)	Mechanical efficienc		B)	Isothermal efficiency
	(C)	Hydraulic efficiency		D)	Overall efficiency
40					,
46.		er is used to measure			
	(A)	Velocity of the fluid		B)	Discharge of the fluid
	(C)	Density of the fluid	(1	D)	Pressure of the fluid
47.	"Stokes" i	is the unit of:			
	(A)	Kinematic viscosity	O.	B)	Absolute viscosity
	(C)	Absolute pressure		D)	Kinetic energy
10	D.1. 1				
48.		neel turbine is:			
	(A)	Axial flow impulse to			
	(B)	Inward flow impulse			
	(C) (D)	Outward flow impuls			
	(D)	Tangential flow impu	use turbine		
49.	If a mater	ial is loaded within ela	astic limits, the stre	ss p	roduced is proportional to strain. This
	statement	is known as:			
	(A)	Poisson's law	(E		Hook's law
199/	(C)	Newton's law	(I))	Lami's theorem
128/2	1015		8		A

50.	The ratio	of direct stress to volumetric strain is	knowr	n as:
	(A)	Bulk modulus	(B)	Modulus of rigidity
	(C)	Poisson's ratio	(D)	Modulus of elasticity
51.		ver beam of length 'l' carries a poir seems to in the shape as :	nt load	'W' at the free end. The shear force
	(A)	A triangle		
	(B)	Two equal and opposite triangles		
	(C)	Two equal and opposite rectangles		
	(D)	A rectangle		
52.		aly distributed load 'W' Newton's per r the whole span 'l'. The shear force at		ength is carried by a simply supported ntre of the beam is:
	(A)	Zero	(B)	W1/2
	(C)	$Wl^2/2$	(D)	Wl/4
53.	The ratio	of limiting friction to normal reaction	hetwee	en two hodies
00.	(A)	Static friction	(B)	Dynamic friction
	(C)	Coefficient of friction	(D)	Limiting friction
54.	The strain	n energy stored in a body due to extern	nal load	ling within elastic limits is known as :
	(A)	Resistance	(B)	Torsion
	(C)	Bending	(D)	Resilience
55.	If, $Ft = \text{ter}$	nsile stress, $P =$ tensile load applied	d and	A = cross sectional area, choose the
	correct eq	uation:		
	(A)	P = Ft/A	(B)	P = A/Ft
	(C)	Ft = P/A	(D)	Ft = A/P
56.		meter of the rivets and $t = $ thickness pressed as:	of the p	plates to be riveted, the Unwin formula
		$d = 4\sqrt{t}$	(B)	$d=6\sqrt{t}$
	(C)	$d = 8\sqrt{t}$	(D)	$d = 6\sqrt{t}$ $d = 2\sqrt{t}$
57.	In a shaft	or a hole the maximum possible varia	ition in	dimension is known as:
	(A)	Fit	(B)	Limit
	(C)	Allowance	(D)	Tolerance
				128/2015
4		9		128/2015

58.	For a rou	nd solid shaft, diameter = d , the mome	ent of	inertia is equal to:
	(A)	$I=\pi d^4/64$	(B)	$I = \pi d^4/32$
	(C)	$I = \pi d^4/16$	(D)	None of the above
59.			ides o	If a belt in (N) and $V =$ velocity of the
		power transmitted is equal to:		
		$(T_2-T_1)*V$		$(T_1-T_2)*V$
	(C)	$(T_2-T_1)/V$	(D)	None of the above
60.		er of driver and driven pulley are 10 cates at a speed of 200 rpm, find the spe		d 20 cm respectively and if, the driver driven pulley:
	(A)	100 rpm	(B)	150 rpm
	(C)	200 rpm	(D)	250 rpm
61.	In thrust	bearings the load acts:		
	(A)	Perpendicular to the axis of rotation		
	(B)	Parallel to the axis of rotation		
	(C)	Along the axis of rotation		
	(D)	All of the above		
32.	The stren	gth of a riveted joint is equal to :		
	(A)			
	(B)	Lowest shearing strength of the rivet		
		Lowest tearing strength of the plate		
	(D)	All of the above		
33.	For a dou	ble threaded screw, choose the correct s	statem	nent ·
	(A)	Lead is twice the pitch	(B)	Pitch is twice the lead
	(C)	Lead is equal to pitch	(D)	Lead is half of the pitch
	(0)	Louis oqual to proof	(1)	Boud to half of the proof
64.	A spring r	naterial should have the following prop	erties	s:
	(A)	High breaking strength	(B)	High yield strength
	(C)	High hardness	(D)	All of the above
5.	Kelvin-Pla	anck's statement deals with:		
	(A)	Conversion of heat into work	(B)	Conservation of work
	(C)	Conservation of heat	(D)	Conservation of mass

66.	In a syst		llowed to	cross the boundary of the system is
	(A)	Isentropic system	(B)	Isolated system
	(C)	Isothermal system	(D)	Closed system
67.	Charles la	aw, mathematically defined as:		
	(A)	V/t = constant	(B)	$p \cdot V = \text{constant}$
	(C)	p/t = constant	(D)	$p \cdot t = \text{constant}$
68.	Pascal (P	(a) is the unit of:		
	(A)	Force	(B)	Density
	(C)	Power	(D)	Pressure
69.	An adiaba	atic process is one in which:		
	(A)	The change in internal energy is e	qual to w	ork done
	(B)	No heat enter or leaves the system	n	
	(C)	The temperature of the gas chang	es	
	(D)	All of the above		
70.	Morse tes	t is conducted on a multi-cylinder I	C engine	is to determine its:
	(A)	Mechanical power	(B)	Brake power
	(C)	Indicated power	(D)	Indicated thermal efficiency
71.	Capillary	tube is used as ——— in refrig	eration sy	ystems.
	(A)	Expansion device	(B)	Evaporating device
	(C)	Piping device	(D)	Defrosting device
72.	In a throt	tling process ——— remain cor	stant.	
	(A)	Pressure	(B)	Entropy
	(C)	Enthalpy	(D)	Temperature
73.	Human co	omfort is related with:		
	(A)	Temperature of air	(B)	Humidity of air
	(C)	Purity of air	(D)	All of the above
74.	Unit of re	efrigeration is expressed as:		
	(A)	Kilo joule	(B)	Kilowatt
	(C)	TON	(D)	Kilopascal
A		11		128/2015

75.	Fourier's	law of heat transfer is	s related to:		
	(A)	Convection		(B)	Conduction
	(C)	Radiation		(D)	Condensation
76.	The fluiknown as		at through evapo	oratio	on and rejects it by condensation is
	(A)	Absorbant		(B)	Coolant
	(C)	Refrigerant		(D)	Solvent
77.	The device	ces, which are fitted or	a boiler for its sa	fe an	d smooth operation are known as:
	(A)	Boiler mountings		(B)	Boiler accessories
	(C)	Boiler draught		(D)	All of the above
78.	In a refri	gerating system, the ra	atio of refrigeratin	g eff	ect to work done is known as:
	(A)	Energy Performance		(B)	Coefficient of Performance
	(C)	Mechanical Efficience	ey	(D)	Coefficient of Heat Transfer
79.	The absol	lute temperature of wa	ter, when boiling	at at	mospheric pressure can expressed as :
	(A)	373.16 K		(B)	332°F
	(C)	273.16 K		(D)	100°C
80.	The bran	ch of engineering scie	ence deals with the	ne st n as :	udy of, behavior of dry air and water
	(A)	Refrigeration		(B)	Psychrometry
	(C)	Air conditioning		(D)	Air heating
81.	The Sama	adhi of Chattampi Swa	migal is at:		
	(A)	Varkala		(B)	Panmana
	(C)	Alathoor		(D)	Kannammoola
82.	"Daivadas	sakam" is the work of:			
	(A)	Chattampi Swamigal		(B)	Sree Narayana Guru
	(C)	Ayyankali		(D)	Sankaracharya
83.	"Sadhujan	na Paripalana Yogam"	was founded by :		
	(A)	Sree Narayana Guru		(B)	Ayyankali
	(C)	Chattampi Swamigal		(D)	Brahmananda Sivayogi
128/	2015		12		A

84.	"Adukkal	ayil Ninnum Arangathekku" is t	he drama wi	ritten by:	
	(A)	M.R. Bhattathirippad	(B)	V.T. Bhattathirippad	
	(C)	E.M.S. Namboodiripad	(D)	N.N. Pillai	
85.	"Ezhava l	Memorial" was submitted under	the leadersh	ip of:	
	(A)	Sree Narayana Guru	(B)	Dr. Palpu	
	(C)	Kumaran Asan	(D)	Sahodaran Ayyappan	
86.	Who was	the recipient of the Jnanapith A	ward of the y	vear?	
	(A)	M.T. Vasudevan Nair	(B)	U.R. Ananthamoorthy	
	(C)	Balachandra Nemade	(D)	Asapoornadevi	
87.	Who was	the chief guest of the Republic D	ay celebratio	ons of this year?	
	(A)	Hosni Mubarakh	(B)	Barakh Obama	
	(C)	Shinso Abe	(D)	Rowl Kastro	
88.	Planning	Commission was established in	India in the y	year:	
	(A)	1950	(B)	1951	
	(C)	1956	(D)	1947	
89.	The hero	of the film "P.K.":			
	(A)	Kamal Hassan	(B)	Ameer Khan	
	(C)	Mamootty	(D)	Rajni Kanth	
90.	'Wanderin	ng in many Worlds" is the autobi	ography of:		
	(A)	B.G. Varghese	(B)	Kuldip Nayyar	
	(C)	V.R. Krishna Iyer	(D)	Kailash Satyarthi	
91.	Five year	plans in India was started in the	e year :		
	(A)	1950	(B)	1951	
	(C)	1947	(D)	1949	
92.	The east f	lowing river in Kerala :			
	(A)	Kabani	(B)	Pumba	
	(C)	Bharathapuzha	(D)	Achancovil	
A			13		[P.T.O.]

93.	Aadhar w	as started in the yea	r:		
	(A)	2009		(B)	2010
	(C)	2008	((D)	2011
94.	The first	ATM in India was sta	arted at:		
	(A)	Delhi		(B)	Mumbai
	(C)	Chennai		(D)	Calcutta
95.	Salt Satya	agraham at Payyann	ur was under the lea	ader	ship of:
	(A)	A.K. Gopalan		(B)	K. Kelappan
	(C)	P. Krishna Pillai		(D)	Moidu Moulavi
96.	"Keralam	Malayalikalude Mat	hrubhumi" is the bo	ok w	ritten by:
	(A)	K. Kelappan		(B)	E.M.S. Namboodiripa
	(C)	S. Gupthan Nair		(D)	Madhavan Nair
97.	The leade	r of the 1857 struggle	e at Delhi :		
	(A)	Bahadur Shah	((B)	Nana Saheb
	(C)	Jhansi Rani	((D)	Kunwar Singh
98.	The Civil	Disobedience Movem	ent was started in t	he y	ear:
	(A)	1930		(B)	1931
	(C)	1920		(D)	1942
99.	"Poorna S	waraj" was declared	as the aim of the con	ngre	ss in which session?
	(A)	Lahore	. ((B)	Madras
	(C)	Calcutta		(D)	Bombay
100.	"Delhi Ch	alo" is the slogan of :			
	(A)	Subhash Chandra l	Bose ((B)	Lal Bahadur Sastri
	(C)	Jawaharlal Nehru		(D)	Rash Behari Bose