PSC Foreman - Govt Instrument Workshop - Kerala Small Industries Development Corporation Ltd Sidco Examination Previous Year Question Paper

Exam Name: Foreman - Govt Instrument
Workshop - Kerala Small Industries Development
Corporation Ltd - Sidco

Date of Test: 19.08.2015

Question Paper Code: 154/2015

Medium of Questions: English

154/2015

	Maximum: 100	mark	s
			Time: 1 hour and 15 minutes
In S.I. uni	ts Joule is expressed as :		
(A)	Nm/s	(B)	Nm
(C)	Nm^2	(D)	mN
Modulus o	of rigidity is experimentally the ratio of		
(A)	Linear stress to longitudinal strain		
(B)	Hydrostatic stress to volumetric strai	n	
(C)	Axial stress to lateral strain		
(D)	Shear stress to shear strain		
The defini	ition of Specific fuel consumption is:		
(A)	Fuel consumption per BHP	(B)	Fuel consumption for hour
(C)	Fuel consumption per hour per BHP	(D)	Fuel consumption per IHP
			mean radius r , wall thickness t and
(A)	pr/4t	(B)	2pr/t
(C)	pr/t	(D)	pr/2t
The heigh	at of water column corresponding to a p	ressu	re of 54 KN/m ² is:
(A)	5.5 m	(B)	8.5 m
(C)	11.0 m	(D)	4.5 m
		ne pis	ton displacement of the compressor is
(A)	Volumetric efficiency	(B)	Theoretical horsepower
(C)	Compressor efficiency	(D)	Brake horse power
The use o	f cupola is to make:		
(A)	Wrought Iron	(B)	Pig Iron
(C)	Steel	(D)	Cast Iron
	3		[P.T.O.]
	(A) (C) Modulus (A) (B) (C) (D) The definit (A) (C) The longing subjected (A) (C) The height (A) (C) The ratio known as (A) (C) The use of (A)	In S.I. units Joule is expressed as: (A) Nm/s (C) Nm² Modulus of rigidity is experimentally the ratio of (A) Linear stress to longitudinal strain (B) Hydrostatic stress to volumetric strain (C) Axial stress to lateral strain (D) Shear stress to shear strain The definition of Specific fuel consumption is: (A) Fuel consumption per BHP (C) Fuel consumption per hour per BHP The longitudinal (axial) stress for a thin cylind subjected to an internal fluid pressure p, would he (A) pr/4t (C) pr/t The height of water column corresponding to a period (A) 5.5 m (C) 11.0 m The ratio of the capacity of a compressor to the known as: (A) Volumetric efficiency (C) Compressor efficiency The use of cupola is to make: (A) Wrought Iron (C) Steel	(A) Nm/s (C) Nm² (D) Modulus of rigidity is experimentally the ratio of: (A) Linear stress to longitudinal strain (B) Hydrostatic stress to volumetric strain (C) Axial stress to lateral strain (D) Shear stress to shear strain The definition of Specific fuel consumption is: (A) Fuel consumption per BHP (B) (C) Fuel consumption per hour per BHP (D) The longitudinal (axial) stress for a thin cylinder of subjected to an internal fluid pressure p, would be: (A) pr/4t (B) (C) pr/t (D) The height of water column corresponding to a pressure (A) 5.5 m (C) 11.0 m (D) The ratio of the capacity of a compressor to the pisknown as: (A) Volumetric efficiency (B) (C) Compressor efficiency (C) Compressor efficiency (D) The use of cupola is to make: (A) Wrought Iron (B) (C) Steel (D)

8. The process used in summer air conditioning is known as: Humidification (B) Heating and humidification De humidification (D) Cooling and dehumidification 9. Temperature of human body is 94.2°F. Its corresponding temperature in celsius scale is: 73.78°c (B) 34.56°c (C) 371.4°c (D) 110.67°c In the cast Iron the percentage of carbon usually varies between: (A) 0.5 to 1.0% 0.1 to 0.2% (C) 1.0 to 1.5% 2.5 to 3.5% 11. The ratio of total emissive power of a body to the total emissive power of a black body is called: (A) Reflectivity Absorptivity (B) (C) Transmitivity Emissivity Factor of safety is defined as the ratio of: Endurance limit to yield stress Elastic limit to ultimate stress Yield stress to working stress Breaking stress to working stress A simply supported beam of span (1) carries a uniformly distributed load over the whole span. The shear force diagram will be: (A) a rectangle (B) a triangle two equal and opposite triangles (D) two equal and opposite rectangles 14. When a shaft of diameter d is subjected to torsional load T, the maximum shear stress fs, induced in the shaft is given by the relation: (A) $fs = \frac{64T}{\pi d^3}$ (C) $fs = \frac{8T}{\pi l^3}$

15. The torsion equation is given by:

(A)
$$T/J = fs/R = C\theta/L$$

(B)
$$T/fs = R/J = C\theta/L$$

(C)
$$T/R = fs/J = C\theta/L$$

(D)
$$T/J = fs = R = L/C\theta$$

154/2015

16.	Sweep pa	tterns are used for :	11	
	(A)	Non ferrous castings	(B)	Coreless objects
	(C)	Large circular castings	(D)	Tiny objects
17.		plate is immersed in an oil t is the intensity of pressure on t		weight 8 kN/m³ upto a depth of to the oil:
	(A)	24 kN/m^2	(B)	48 kN/m²
	(C)	12 kN/m^2	(D)	56 kN/m ²
18.	The Ellip	tic trammels and Oldhams coupl	ing are the i	nversion of:
	(A)	Double slider crank chain	(B)	Single slider crank chain
	(C)	Four bar chair	(D)	Crossed slider crank chain
19.	The hydra	aulic gradient line is :		
	(A)	some times above the energy gr	radient line	
	(B)	at velocity head below the ener	gy gradient l	line
	(C)	is always sloping downwards a	long the flow	direction
	(D)	is always above the axis of the	closed condu	ct
20.	Bar is the	e unit of:		
	(A)	Entropy	(B)	Energy
	(C)	Power	(D)	Pressure
21.	The differ	rence between the upper limit an	d lower limit	t of a dimension is known as:
	(A)	Nominal size	(B)	Tolerance
	(C)	Basic size	(D)	Actual size
22.		pelt drive, the belt can be subject condition for transmission of maxi-		mum tension T and centrifugal tension is given by:
	(A)	T = 2Tc	(B)	T = Tc
	(C)	T = 3Tc	(D)	$T = \sqrt{3} Tc$
23.	A gas w	hose original pressure, volume ectively is compressed to 600 KN	and tempe /m² and 50°c	rature were 120 KN/m², 0.1 m³ and c. The new volume of the gas is:
	(A)	0.0426 m^3	(B)	2.1 m^3
	(C)	22.1 m^3	(D)	0.0213 m ³
A			5	154/2015 [P.T.O.]

24.		ce, which holds and locate	es a work pie	ce and guides and	controls one or
	(A)	Lathe	(B)	Template	
	(C)	Fixture	(D)	Jig	
o da	oh e jao	of Smith Constitution of the Smith			
25.	Critical te	emperature of a gas is the ten			
	(A)	above which it cannot be liq	uefied		
	(B)	at which its liquefaction jus	t starts		
	(C)	at which the intermolecular	gap is reduced	to zero	
	(D)	at which its liquefaction is	complete		
26.	The proce	ss which takes place below re	ecrystallisation	temperature is known	as:
	(A)	Grinding	(B)	Hot working process	
	(C)	Cold working process	(D)	Casting	
27.	Which air	ir standard cycle consists	of two isothe	ermal processes and	two adiabatic
	(A)	Diesel cycle	(B)	Ericson cycle	
	(C)	Otto cycle	(D)	Carnot cycle	
28.	An examp	le of a natural abrasive from	the following:		
	(A)	Diamond	(B)	Aluminium oxide	
	(C)	Boron carbide	(D)	Silicon carbide	
29.		llier diagram the abscissa rep			
	(A)	Total heat	(B)	Entropy	
	(C)	Temperature	(D)	Pressure	
30.	The tool is	stationery and the work rec	inrocates in case	of a	
4	(A)	Planer	(B)	Milling machine	
	(C)	Shaper	(D)	Slotter	
		Shaper	(D)	Siotiei	
31.	The use of	Fusible plug in a boiler is to	:		
	(A)	Extinguish the fire in case o			
	(B)	Prevent the leakage of steam			
	(C)	Allow passage of only super		om the boiler	
	(D)	Keep the boiler pressure wit			
154/2	2015		6		A

	(A)	Index of compression	(B)	Volume of free air delivered The pressure of air at delivery	
	(C)	The work input to compressor	(D)	The pressure of air at derivery	
33.	The begin	ning and the end of a task is called	:		
	(A)	An event	(B)	An activity	
	(C)	Slack	(D)	Dummy	
34.	The equiv	valent quantity of one ton of refriger	ation is:		
	(A)	5 KW	(B)	3.5 KW	
	(C)	2.5 KW	(D)	1 KW	
35.	Newton's	law of viscosity states that:			
	(A)	Shear stress is directly proportion	al to the	viscosity	
	(B)	Shear stress is directly proportion			
	(C)	Shear stress is directly proportion			
	(D)	Shear stress is directly proportion	al to shea	r strain	
36.	The cycle	in which the open cycle gas turbine	works on	:	
	(A)	Rankine cycle	(B)	Carnot cycle	
	(C)	Brayton cycle	(D)	Otto cycle	
37.	A certain	element has a half life of 22 days. I	ts averag	e life is :	
٥	(A)	31.74 days	(B)	44.13 days	
	(C)	11.89 days	(D)	5.56 days	
38.	Dimetral	pitch is defined as the ratio of			
00.	(A)	Pitch circle diameter to number of	f teeth		
	(B)	Number of teeth to pitch circle dia			
	(C)	Circumference of pitch circle to nu		teeth	
	(D)	Number of teeth to the circular pi			
39.	The proce	ess of increasing thickness of a bar	at its exp	ense of its length and is brought by	end
00.	pressure				
	(A)	Drawing down	(B)	Upsetting	
	(C)	Fullering	(D)	Punching	
	(-)				

40.	The flow	in the pipe is laminar if:		the state of the s
	(A)	Reynold number is equal to 2,500	(B)	Reynold number is equal to 4,000
	(C)	Reynold number is more than 2,500	(D)	None of the above
41.	Venturim	neter is used to measure :		
	(A)	Discharge	(B)	Pressure at a point
	(C)	Average velocity	(D)	Velocity at a point
42.		o bodies are in thermal equilibrium on with each other. This statement is o		a third body, they are also in thermal:
	(A)	Zeroth law of thermodynamics	(B)	2 nd law of thermodynamics
	(C)	1st law of thermodynamics	(D)	Gaylussac's law
43.	The basic	law of heat conduction is called :		
	(A)	Newton's law of cooling	(B)	Kirchoff's law
	(C)	Fourier's law	(D)	Stefan's law
44.		was purchased, erected and installed mated after 20 years is Rs.15,000/- the		an amount of Rs. 52,000/ The scrap of depreciation is:
	(A)	Rs. 37,000/-	(B)	Rs. 1,850/-
	(C)	Rs. 2,600/-	(D)	Rs. 750/-
45.	The ratio	of the specific weight of a liquid to spec	cific w	eight of a standard fluid is known as :
	(A)	Specific volume	(B)	Weight density
	(C)	Specific gravity	(D)	Viscosity
46.	The centr	e to centre distance between two conse	cutivo	rivate in a row is called.
	(A)	Margin	(B)	Pitch
	(C)	Back pitch	(D)	Diagonal pitch
47.	Kaplan tu			
	(A)	a high head mixed flow turbine	(B)	an outward flow reaction turbine
	(C)	an impulse inward flow turbine	(D)	axial flow reaction turbine
48.	The positi		e of ra	adius 'r' lies on the central radius at a
	(A)	2/3 r	(B)	1/2 r
	(C)	3/4 r	(D)	3/8 r
154/	2015	8		(A

49.	Sinking fo	and is associated with:		
	(A)	Period of reduced economic activity	(B)	Machine depreciation
	(C)	Cost of equity and debt	(D)	Machine replacement
50.	In electro	discharge machining the tool is made	of:	
	(A)	Tungsten carbide	(B)	Stain less steel
	(C)	Brass or copper	(D)	Diamond
51.	Lathe cen	tres are provided with a standard tape	er knov	vn as:
	(A)	Seller's taper	(B)	Chapman taper
	(C)	Jarno taper	(D)	Morse taper
52.	Which of	the following is not foundry tool?		
	(A)	Arbor	(B)	Riddle
	(C)	Slick	(D)	Trowel
53.	A system	of working known as functional organi	isation	was introduced by:
	(A)	Newton	(B)	F.W. Taylor
	(C)	Gilberth	(D)	Gnatt
54.	Break-eve	en point is the point where:		
	(A)	Variable and total cost lines intersec	t	
	(B)	Total cost and sales revenue lines in	tersect	
	(C)	Fixed and variable cost lines intersec	et	
	(D)	Total cost and fixed lines intersect		
55.	K. Stepha	with an area 2×10^{-4} m ² emits radiated an Boltzman constant $\sigma = 5.67 \times 10^{-8}$ mispherical space :	ion as w/m²	a black body at a temperature of 1000 k^4 what is the energy emitted into the
	(A)	22.68 W	(B)	5.66 W
	(C)	11.34 W	(D)	328 W
56.	Air vesse	l in a reciprocating pump is used :		
	(A)	to obtain a continues supply of water	at un	iform rate
	(B)	to reduce suction head		
	(C)	to increase the delivery head		
	(D)	to reduce the discharge		
A		9		154/2015 [P.T.O.]

57.	In milling	g machines the Indexing of t	the job is done wit	ch:
	(A)	Differential mechanism	(B)	Dividing head
	(C)	Face plate	(D)	Arbor
58.	The dime	nsional formula of dynamic	viscosity are:	
	(A)	$ML^{-2}T^{-2}$	(B)	MLT
	(C)	$\mathrm{ML^{-1}T^{-2}}$	(D)	$ML^{-1}T^{-1}$
59.	The purp	ose of Surge tank in a pipe l	ine is to:	
	(A)	Make the flow uniform in	pipe	
	(B)	Reduce the loss of head du	ae to friction in pi	pe
	(C)	Relieve the pressure due t	o water hammer	
	(D)	Increase the velocity in th	e pipe	
60.	Brass is a	n alloy of copper and :		
	(A)	Aluminium	(B)	Tin
	(C)	Zinc	(D)	Lead
61.	A micropi	cocessor unit, a memory uni	t and an input / o	utput unit form, a:
	(A)	CPU	(B)	Compiler
	(C)	Microcomputer	(D)	ALU
62.	An ideal o	operational amplifier has:		
	(A)	Infinite output impedance	(B)	Zero input impedance
	(C)	Infinite Bandwidth	(D)	All of the above
63.	Which typ	pe of signal is represented by	y discrete values?	
	(A)	Noisy signal	(B)	Non linear
	(C)	Digital	(D)	Analog
64.	The gauge	e factor of strain gauge is no	ormally of the ord	er of:
	(A)	0.5 to 1	(B)	1 to 1.5
	(C)	1.5 to 21	(D)	5 to 10
65.	The logic a (n):	gate that will have high or	"1" at the output	when any one at the inputs is high is
	(A)	OR gate	(B)	AND gate
	(C)	NOR gate	(D)	NOT gate
154/	2015		10	A

66.	A port car	n be:		
	(A)	Strictly for input	(B)	Bidirectional
	(C)	Strictly for output	(D)	All of the above
67.	Reynold's	number of stream lined	flow is :	
	(A)	Less than 2000	(B)	More than 2000
	(C)	More than 6000	(D)	None of the above
68.	Standard	pneumatic output of an l	//P converter is:	
	(A)	3 to 15 kg/cm ²	(B)	3 to 15 mA
	(C)	0.22 to 1 kg/cm^2	(D)	1.5 to 7 kg cm ²
69.	For flow r	neasurement of highly co	rrosive and erosive	fluids ——— used.
	(A)	Venturi meter	(B)	Rotameter
	(C)	Magnetic flow meter	(D)	Pitot tube
70.	Hydraulio	controller have ———	— power gain.	
	(A)	Low	(B)	Medium
	(C)	High	(D)	None of the above
71.	A 4 – 20 1	mA electronic transmitte	r has an input rang	e of 50°c. If the output is 12 mA, What
	is ———	—— the indicated tempe	erature in centigrade	?
	(A)	10°	(B)	25°
	(C)	30°	(D)	40°
72.		— is the final control ele	ment in most proces	ss control system.
	(A)	Controller	(B)	Control Valve
	(C)	Transmitter	(D)	Amplifier
73.	An Angul	arity error is in the:		
	(A)	Energy meter	(B)	Watt meter
	(C)	BT Pressure gauge	(D)	Micrometer
74.	Vortex me	eter transducer is used fo	or:	
	(A)	Temperature	(B)	Pressure
	(C)	Level	(D)	Flow
A			11	154/2015 [P.T.O.]

75.	The most popular medium for the data highway for DCS Communication is:				
	(A)	Internet	(B	Web	
	(C)	Ethernet	(D) Modem	
76.	In closed	- loop control system, t	he input has control	over:	
	(A)	Open loop	(B)	Output	
	(C)	Feed – back	(D) Set point	
77.	Full form	of HART is:			
	(A)	Highway Accessable	Range Transmitter		
	(B)	Highway Addressable	e Remote Transmitte	er	
	(C)	Highway Accessable	Remote Transducer		
	(D)	Highway Addressable	e Range Transmitter	As mercennous and	
78.	When the	pressure of water incr	eases, its volume?		
	(A)	Increases	(B)) Not change	
	(C)	Decreases	· (D)	None of the above	
79.	Instrume	nt air of ———— de	ew point is more suit	table for pneumatic instrumentation.	
	(A)	32°	(B)		
	(C)	4°	(D)		
00	T.C				
80.		ional band is less, cont Low			
	(A) (C)		(B)		
	(0)	High	(D)) Infinite	
81.	Kollam er	a of Kerala was started	l in:		
	(A)	78 A.D	(B)	825 A.D	
	(C)	248 A.D	(D)	606 A.D	
82.	Modern po	ostal system in India w	as established by :		
	(A)	Lord Clive	(B)	Lord Curzon	
	(C)	Lord Dalhousie	(D)	Lord Cornwallis	
83.	Which of t	he following has won t	he under – 20 FIFA	World cup in 2013?	
	(A)	Spain	(B)		
	(C)	Italy	(D)		
154/	2015		12		
					14

A			13		154/2015 [P.T.O.]
	(C)	Malabar rebellion	(D)	Kurichiya revolt	
	(A)	Pazhassi revolt	(B)	Santhal rebellion	n
92.	'Wagan T	radgedy' was in connection wi	th:		
	(C)	Daman	(D)	Cochin	
	(A)	Bijapur	(B)	Calicut	
91.		nguese built their first fort on			naja oi :
22	mi p		T. 1::1:	L	Deiref
	(C)	Ayyankali	(D)	Brahmananda S	wami Sivayogi
	(A)	Sree Narayana Guru	(B)	Chattampi Swan	mikal
90.	Who is kr	nown as the 'Father of Kerala	- Renaissance'	2	
	(C)	Fakhruddin Ali Ahmed	(D)	Neekm Reddy	
	(A)	Zail Singh	(B)	V.V. Giri	
89.	Who was	the president of India on June	e 25 th , 1975?		
	(0)	Guizai	(12)	William Sch	
	(C)	Gulzar	(D)	Mrinal Sen	rjec
00.	(A)	Pran	(B)	Soumitra Chatte	orice
88.	The 15th I	Dada Saheb Phalke Award Wi	nner:		
	(C)	Setu Lakshmi Bhai	(D)	Rani Gangadhar	a Lakshmi
	(A)	Gouri Parvati Bhai	(B)	Gouri Lakshmi I	Bhai
87.	The trava	incore ruler who abolished sla	ve trade (Force	d Labour) :	
	(C)	Pali	(D)	Tamil	
	(A)	Sanskrit	(B)	Prakrit	
86.	What is t	he language of Sangam Litera	iture?		
	(C)	Pandya King	(D)	Pallava King	
	(A)	Chera King	(B)	Chola King	
85.	"Vazhapa from Ker	lli Inscription" is the earlies ala.	t epigraphical	record of ———	— to be discovered
0.	W.T. 1				
	(C)	382	(D)	325	
	(A)	392	(B)	348	
84.	As per th	e census of India 2011, which	is the density of	of population?	

93.	World Wo	orker's day was observ	ved on :	
	(A)	June – 1	(B)	May - 1
	(C)	October – 1	(D)	December – 1
94.	Which is	considered as the seco	ond largest river basin o	of India?
	(A)	Narmada	(B)	Godavari
	(C)	Ganga	(D)	Cauvery
95.	The Accid	lental Prime Minister	: Making and unmaki	ng of Man Mohan Singh : Was written
	(A)	Ravuri Bharadwaja	(B)	Shashi Tharoor
	(C)	Narendra Kholi	(D)	Sanjaya Baru
96.	'Sunda T belongs?	rench' is the greates	t known depth of an	ocean. Which among the following it
	(A)	Indian Ocean	(B)	Pacific Ocean
	(C)	Atlantic Ocean	(D)	Arctic Ocean
97.	'Mukunda	amala' in Sanskrit was	s written by:	
	(A)	Tolan	, (B)	Vasudeva Bhattatiri
	(C)	Kulasekhara Alwar	(D)	Sankara Narayana
98.	Who beca	me the editor of Yukt	ivadi' magazine in 1928	3?
	(A)	Sahodaran Ayyappa	n (B)	Blessed Kuriakose – Elias Chavara
	(C)	C. Krishnan	(D)	A.K. Pillai
99.	Which one	e of the following state	es of India receives lowe	est average annual rainfall?
	(A)	Odisha	(B)	Jammu and Kashmir
	(C)	Himachal Pradesh	(D)	Madhya Pradesh
100.	Where is t	the headquarters of th	e Zoological Survey of I	India (ZSI)?
	(A)	Delhi	(B)	Madras
	(C)	Mumbai	(D)	Kolkata