111/2014

1.	The	velocity at which	the flo	ow changes	from	one f	orm to other is	known	as:
	(A)	Average velocity	7		(B)	Supe	er critical velocit	у	
	(C)	Critical velocity			(D)	Maxi	imum velocity		
2.	Send	ling part of the co	ndens	ed liquid b	ack to	the c	olumn is called		
	(A)	Feed	(B)	Distillate		(C)	Rafinate	(D)	Reflux
3.	A ro	tating cylinder of	perfo	rated sheet	metal	or wi	ire screen is call	ed:	
	(A)	Grizzlies			(B)	Tron	nmel		
	(C)	Hummer screen			(D)	Cycl	one separator		
4.		element which re on should be taker			ation	from	the measuring	devices	and decides what
	(A)	Controller	(B)	Sensor		(C)	Transducer	(D)	Transmitter
5.		en an input variab eserved on the out					e is a time interv	al duri	ng which no effect
	(A)	Dead time	(B)	Peak time		(C)	Interval time	(D)	Effective time
6.	In cy	vclone separators	which	liquid is co	ommo	nly us	sed for solid sus	pension	n:
	(A)	Alcohol	(B)	Water		(C)	Kerosene	(D)	Benzene
7.	The	locus of the inter-	section	of the upp	er op	eratin	g line and lowe	r opera	ting line is called:
	(A)	Tie-line	(B)	c-line		(C)	d-line	(D)	q-line
8.	Rey	nold's number car	n be re	epresented	by:				
	(A)	μ/Dul	(B)	Duʃ/u		(C)	Du J/μ	(D)	Duμ/∫
٨					3				
A									{P.T.O.}

9.	The	point of minimum	n cross	s section fro	m an	orific	e flow is called:		
	(A)	Capillary	(B)	Weirs		(C)	Vena contracta	(D)	Ventury
10.	The	efficiency of a sin	gle pla	ate based or	vapo	our-pl	nase composition	is call	ed:
	(A)	Single plate effic	ciency		(B)	Over	rall plate efficienc	cy	
	(C)	Column efficien	су		(D)	Mur	phree efficiency		
11.	Fine	grinders are defi	ined a	s those mad	chines	that	can be made to	give a	product that wil
	(A)	100 mesh screen	1		(B)	200 1	mesh screen		
	(C)	300 mesh screen	1		(D)	400 1	mesh screen		
12.	The	most common dig	gital co	onverters us	ed wi	dely a	are:		
	(A)	8 bit or 12 bit	(B)	10 bit or 14	bit	(C)	15 bit or 20 bit	(D)	20 bit or 25 bit
13.	Whie	ch maintenance is kdown ?	natura	ally underta	ken b	efore	the interruption	of pro	duction and major
	(A)	Preventive main	itenan	ce	(B)	Pred	ictive maintenan	ce	
	(C)	Annual mainten	nance		(D)	Breal	kdown maintena	nce	
14	Dint		hat the						
14.	(A)	nger's law states t The mass	nat the	e energy rec				ess is	proportional to:
	(C)	The mass			(B) (D)		surface sheared density		
	(0)	THE VINGING			(1)		iensity		
15.	The	most widely used	settlin	ig apparatus	s is :				
	(A)	Extractor		Distiller		(C)	Dorr agitator	(D)	Dorr thickner
16.	The	devices used to co	ntrol t	he rate of fl	ow of	fluid	s in pipe lines ar	e calle	d :
	(A)	Pipe fittings	(B)	Nipples		(C)	Valves	(D)	Plugs
17.	For outiliz	diluting dangerou ed :	us con	centration	of fla	mma	ble vapours, wh	ich of	the following is
	(A)	Proper ventilatio	n		(B)	Prope	er lighting		
	(C)	Proper covering			(D)	Prope	er strength		
444/	2014								

18.	Whi	ch one of the foll	owing	is a positiv	e disp	lacen	ent pump ?		
	(A)	Centrifugal pur	mp		(B)	Volu	ite pump		
	(C)	Gear pump			(D)	Turk	pine pump		
19.		pounds of water called :	vapou	r carried by	1 pot	and of	dry air under ar	ny give	en set of conditions
	(A)	Saturated air			(B)	Satu	rated humidity		
	(C)	Relative humid	ity		(D)	Hun	nidity		
20.	The	solid is vigorous	ly agita	ated by the	fluid j	passin	g through the be	d is ca	lled :
	(A)	Filtration	(B)	Fluidizatio	on	(C)	Sedimentation	(D)	Activation
21.	Ther	mal conductivity	can b	e represente	ed by	the le	tter :		
	(A)	T	(B)	С		(C)	K	(D)	Н
22.	A re	verse gas absorp	tion pr	ocess is:					
	(A)	Evaporation	(B)	Distillation	n	(C)	Extraction	(D)	Stripping
23.	The	process of remov	ing air	bound in p	oump	casing	g is called :		
	(A)	Cleaning	(B)	Priming		(C)	Pumping air	(D)	Evaccuating
24	The	made of heat two	an fan t	hat taless al	aga im	tha f	arm of alastroma	omotion	vious is called .
24.									waves is called :
	(A)	Radiation	(B)	Conduction	n	(C)	Convection	(D)	Electrolysis
25.	Con	densation occurs	when	a vapour c	ontact	ts a su	irface which has	a tem	perature below :
	(A)	The saturation	tempe	rature of va	pour				
	(B)	Latent heat of	vapour						
	(C)	Super heated v	apour						
	(D)	Critical tempera	ature c	of vapour					

111/2014 {P.T.O.}

A

26.	The	discharge pressu	re of a	positive di	isplacer	ment :	single stage blo	wer is :		
	(A)	1.1 to 2 atm.	(B)	0.4 to 1 at	tm.	(C)	2.1 to 3 atm.	(D)	3.1 to 4 a	ntm.
27.	Expa	nsion of HETP i	s:							
	(A)	Heat Exchange	r with	Temperatu	ire and	Press	sure			
	(B)	Heat Equivalen	t to Te	emperature	and Pi	ressur	e			
	(C)	Heat Engine w	ith Ter	nperature a	and Pre	essure				
	(D)	Height Equival	ent to	a Theoritica	al plate					
28.	In co	nduction, the dr	riving	force is:						
	(A)	The temperatur	re drop	between t	he soli	d and	the liquid			
	(B)	The temperatur	re drop	between t	he soli	d and	air			
	(C)	The temperatur	re drop	across the	solid					
	(D)	The temperatur	re drop	between t	he soli	d and	the solid at ro	om tem	perature	
29.	Tubu	ılar heaters are a								
	(A)	Tube heater	(B)	External	heater	(C)	Heat exchang	ger (D)	Reboiler	
							Alle:			
30.		amount of heat o	energy	transferred	l by rac	diatio	n per unit area	of the s	urtace in i	unit time
	(A)	Emissive power	r of th	e surface	(B)	Radi		the sur	face	
	(C)	Conductive por								
				tro						
31.	An c	equipment that t	takes s	uction at a	pressi	ire be	low atmosphe	ric and	discharge	s against
		spheric pressure								
	(A)	Piston pump	(B)	Vacuum	pump	(C)	Pressure pum	ip (D)	Plunger	pump
32.	How	many classes of	f cryst		e ?					
	(A)	2	(B)	3		(C)	4	(D)	6	
111	2014				6					A

33.	A de	evice used to reme	ove co	ondensate from st	eam h	eated equipment	is:	
	(A)	Coils	(B)	Kettles	(C)	Traps	(D)	Condensers
34.	The	equation for over	all he	at transfer coeffic	ient is			
	(A)	$q = UA\Delta T$	(B)	$q = UA/\Delta T$	(C)	$q=UAH/\Delta T$	(D)	$q = UA\Delta T/2$
35.	Ther	mal conductivity	of Al	uminium at 100°C	is:			
55.		206 w/m°C		300 w/m°C		400 w/m°C	(D)	500 w/m°C
36.	Whi	ch of the followin	g is u	sed as a continuo	us filt	er?		
	(A)	Plate and Frame		(B)	Leaf	filter		
	(C)	Sieve filter		(D)	Rota	ry drum filter		
	D							
37.		ng point elevation		AND A CONTRACTOR OF THE PARTY OF			(1)	Charles Inc.
	(A)	Nusseit number	(D)	Prandle number	(0)	Dunning's rule	(D)	Charle's law
38.	For l	olending miscible	liquid	ls which operatio	n can	be applied effecti	ively ?	
	(A)	Heating	(B)	Agitation	(C)	Cooling	(D)	Distiling
39.	Basic	law of conduction	on is c	called :				
	(A)	Fick's law	(B)	Fourier's law	(C)	Rittinger's law	(D)	Boyle's law
40	Mani	t and the second	Taxana I	Olem aid in .				
40.	(A)	Silica Silica	(B)	Sand	(C)	Soil	(D)	Kiesulguhr
	(11)	Sinca	(1)	Carra	(-)	CON	(2)	Kitsunguini
41.	Joule	mechanical equi	valent	of energy is:				
	(A)	4.814 J	(B)	4.184 J	(C)	8.414 J	(D)	8.184 J
42.	Whic	ch of the followin	g qua	ntities will be an	exact	differential?		
	(A)	dw	(B)	dq	(C)	dG	(D)	dP
A				7				111/2014
								PTOL

43.	Elect	ron affinity is nea	arly ze	ero for :				
	(A)	C	(B)	Na	(C)	F	(D)	N
44.	Varia	ation of enthalpy	of a r	eaction with temp	peratu	re is given by eq	uation	:
	(A)	Kirchoffs	(B)	Clausius	(C)	Arrhenius	(D)	Gibbs
45.	Bono	d order of NO+ is	s:					
	(A)	3.5	(B)	2.5	(C)	3	(D)	1.5
46.				ro order reaction		-2-2 -1	2255	11-1 -1
	(A)	s ⁻¹	(B)	mol-1/s-1	(C)	$\text{mol}^2 l^{-2} s^{-1}$	(D)	mol l 's '
				C - 1:11 !		tale:		
47.				f a liquid is appr			(D)	48 1/mal V
	(A)	18 J/mol K	(B)	88 J/ moi K	10	68 J/mol K	(D)	48 J/mol K
48.	Α 16	mid is said to we	ot the	walls of the vesse	ol whe	en adhesion is		than cohesion.
40.		equal		lesser		greater		none of these
	()	cquiii	(-)					
49.	Con	nmon name for 1,	3-dih	ydroxy benzene	is:			
		Catechol	(B)	Quinol	(C)	Cresol	(D)	Resorcinol
50.	Sten	eoisomers that are	e not	mirror images are	e calle	d:		
	(A)	Enantiomers	(B)	Diastereomers	(C)	Tautomers	(D)	Optical isomers
51.	Zirc	onyl Alizarin S re	eagent	t can be used for	the de	etection of:		
	(A)	Nitrates	(B)	Sulphates	(C)	Fluorides	(D)	Chlorides
52.	Hyb	oridisation in SnC	<i>l</i> ₂ is:					
	(A)	sp	(B)	sp ³	(C)	sp ²	(D)	dsp ³
111	/2014			8				

53.	Reynold number is associated with of liquids.									
	(A)	Refractive index		(1	B)	Optio	cal activity			
	(C)	Viscosity		(1	D)	Surfa	ce tension			
54.	Optio	mum value of BO	D is:							
	1 2	1-3 mg/l	(B)			(C)	6-10 mg/l	(D)	None of these	
55.	Blue	baby syndrome i	s caus	ed by :						
	(A)	Nitrates	(B)	Carbonates		(C)	Chlorides	(D)	Cyanide	
56.	Elect	ronegativity of P	is ap	proximately :						
	(A)		(B)			(C)	3.5	(D)	2	
57.	Func	damental requirer	nent i	for the mainte	nan	ice of	aquatic life is ex	pressec	l as:	
		DO	(B)	BOD			COD		None of these	
58.	For	a zero order reac	tion, v	when initial co	once	ntratio	on is doubled t ₁	/2 is :		
	(A)	halved	(B)	doubled		(C)	unchanged	(D)	quadrupled	
59.	Eutr	ophication is cau	sed by	y the presence	of					
	(A)	Carbonates	(B)	Sulphates		(C)	Phosphates	(D)	Chlorides	
60.	Upp	permost layer of t	he atr	nosphere is :						
	(A)	Troposphere	(B)	Exosphere		(C)	Mesosphere	(D)	Stratosphere	
61.	Tole	erable limit of nois	se lev	el is :						
	(A)	18 db	(B)	85 db		(C)	50 db	(D)	120 db	
62.	Ioni	ic radii is minimu	m for	:						
	(A)	N3-	(B)	F-		(C)	Na ⁺	(D)	Al ³⁺	
A					9				111/2014 (P.T.O.	

63.	Wh	ich of the follow	ring is	expected to have	a pyra	amidal structur	re?	
	(A)	C10-2	(B)	ClO ₃	(C)	PO ₄ ³⁻	(D)	C10-4
64.	Min	amata disease i	n Japai	n was a conseque	ence o	f P	oisoning	
	(A)	Mercury	(B)	Cyanide	(C)	Lead	(D)	Arsenic
65.	Uni	t of Arrhenius e	xponer	ntial factor A is:				
	(A)	J/Kmol	(B)	KJ/mol	(C)	mol/dm ³ s	(D)	dm ³ /mol s
66.	Shaj	pe of H ₃ O ⁺ is:						
	(A)	Tetrahedral	(B)	Square planar	(C)	Pyramidal	(D)	T shape
67.	Benz	zene hexachlorio	le is co	ommonly known	as:			
	(A)		(B)	Lindane	(C)	DDT	(D)	Malathion
68.	Whi	ch of the followi	ing ion	s yield colourless	soluti	ons?		
		Fe ³⁺	(B)	Mn ²⁺	(C)	Ti ^{3.4}	(D)	Cu+
69.	Phot	ochemical smog	is cau	sed by oxides of :				
	(A)	Carbon	(B)	Phosphorus	(C)	Sulphur	(D)	Nitrogen
70.	Enth	alpy of hydratic	n is ne	gative for the dis	solutio	on of :		
	(A)	CuSO ₄	(B)	KCI	(C)	NaNO ₃	(D)	CuSO ₄ .5 H ₂ O
71	Power			anilina				
71.	(A)	oic acid can be			(C)	Solvent extra	ction	(D) All of these
			(-)	Caystanisation	(0)	Solvent extra	cuon	(D) All of these
72.	Phos	phorus is estima	ated as	its:				
	(A)	H ₃ PO ₄		(B)	[(NH	I ₄) ₃ PO ₄ .12.Moo	03	
	(C)	(NH ₄) ₃ PO ₄		(D)	None	e of these		
111/	2014			10				

73.	An e	xample for a electr	rophil	le is :					
	(A)	Hydride ion	(B)	Water		(C)	Ether	(D)	Nitrene
74.	Exan	aple for compound	d not	showing en	antio	meris	m :		
	(A)	Tartaric acid			(B)	1, 3-0	dimethyl allene		
	(C)	Lactic acid			(D)	None	e of these		
75.	The effec	order of basicity of t.	f amii	nes NH ₃ < R	NH ₂	< R ₂ N	NH < R ₃ N may b	e attrib	outed to
	(A)	inductive			(B)	meso	omeric		
	(C)	hyperconjugative	e		(D)	elect	romeric		
76.	Inter	mediate in pinaco	ol-pin	acolone rear	range	ement	is:		
	(A)	Carbocation	(B)	Carbanion		(C)	Carbene	(D)	None of these
77.	Stab	ility of half filled of	orbita	l configurati	ion is	a con	sequence of:		
	(A)	Hunds rule			(B)	Aufl	bau principle		
	(C)	Pauli's principle			(D)	Non	e of these		
78.	Chlo	proplatinic acid is	used	for the estin	nation	n of:			
	(A)	Acids	(B)	Chloride		(C)	Bases	(D)	Nitrogen
79.	Stea	m distillation may	be u	seful for the	puri	ficatio	on of:		
	(A)	Benzene	(B)	Benzoic ac	cid	(C)	Aniline	(D)	Ethyl acetate
80.	Ene	rgy required for p	olacin	g two electro	ons ii	n an o	orbital is termed	-	energy.
	(A)	exchange	(B)	pairing		(C)	promotional		
81.	On	which day the Oz	one I	Day is observ	ved e				
	(A)	May 31	(B)	August 21	1	(C)	September 16	(D)	November 5
					4.0	or			111/2014
A					1)	CT.			IPT O I

82.	The is:	Programme intre	oduce	d by the Central	Gove	rnment for housi	ng and	slum developme
	(A)	IHSDP	(B)	JRY	(C)	MGNREGP	(D)	PMRY
83.	Whi	ich is the second	highe	st mountain peal	k is So	uth India ?		
	(A)	Nallamala	(B)	Palconda	(C)	Nanjaparva	(D)	Dodabetta
84.	Nan	ne the river that o	rosse	s the equator two	times	s:		
	(A)	Amazon	(B)	Nile	(C)	Congo	(D)	Ganges
85.	The	Loktak Lake is si	tuated	I in which state				
	(A)	Meghalaya	(B)	Manipur	(C)	Mizoram	(D)	Tripura
86.	How	many forest div	isions	are founded in	Kerala	7		
	(A)		(B)	39	(C)	47	(D)	35
87.	Who	is the present Cl	hief Ir	nformation Office	er of th	ne Central Inform	nation	Commission ?
	(A)	Sushma Singh		Sushma Swara				P. Sadasivam
88.	Nam	e the winner of N	Vation	al Film Award 2	012 fo	or Best National I	nteora	tion Film
		Spirit		(B)		yguard		
	(C)	Thanichallah nj	an	(D)		yachan		
89.	Whice 2013	h country grant?	ed O	ne Year tempor	ary as	sylum for Edwa	rd Sno	owden in Augus
	(A)	Hong Kong	(B)	Russia	(C)	Venezuela	(D)	Britain
90.	FIFA	U-17 Foot Ball W	orld (Cup will be host	ed by	which country ?		
		India	(B)	Chile	(C)	Brazil	(D)	Ukraine
11/	2014			12				

91.	Who is the founder of Wiki Leaks?		
	(A) Bill Gates	(B)	Mark Zuckerberg
	(C) Julian Asange	(D)	Larry Page
92.	The first telegraph line introduced by	Lord	Dalhousie in 1853 ran between
	(A) Bombay and Thane	(B)	Calcutta and Madras
	(C) Bombay and Agra	(D)	Calcutta and Agra
93.	The Royal Indian Navy Mutiny of 19	46 was	s started at
	(A) Bombay (B) Madras		(C) Calcutta (D) Cochin
94.	Name the social reformer who came to	o be k	nown as 'Vidyasagar of the South'.
	(A) Sree Narayana Guru	(B)	Veeresalingam
	(C) Ayyankali	(D)	E.V. Ramaswami Naikar
95.	Who was the founder of Atmavidya S	Sangan	1?
	(A) Swami Dayananda Saraswati	(B)	Ayyankali
	(C) Vagbhadananda	(D)	Dr. Palpu
96.	Who started the Malayalam daily Nas		
	(A) Mamman Mappila	(B)	Kuriakose Chaavara
	(C) Philipose Thomas	(D)	Herman Gundert
			n12
97.	Who was the first President of Travar		
	(A) K.Kelappan	(B)	Pattom Thanupillai
	(C) Sir C.P. Ramaswami Iyyer	(D)	Mannath Padmanabhan
A		13	111/2014

fb.com/pscnet.in

{P.T.O.}

- 98. The founder of Sadhujana Paripalana Sangham was :
 - (A) Sree Narayana Guru
- (B) Ayyankali

(C) Vagbhadananda

- (D) K. Madhavan Nair
- 99. The Civil Disobedience Movement was started on :
 - (A) March 12, 1930

(B) April 6, 1930

(C) April 12, 1930

- (D) March 6, 1930
- 100. Who is the winner of the US Open (Tennis) Men's title 2013?
 - (A) Rafael Nadaal

(B) Andy Murray

(C) Roger Federer

(D) Djkovic

-000-