140/2014

1.	Which among the following so (n, l, m, s)?	et of quantum	numbers is not a	llowed	for the values of
	(A) (2, 1, 1, 2)	(B) (1	, 0, 1, +1/2)		
	(C) (2, 1, 1, +1/2)	(D) (4	, 3, -1, -1/2)		
2.	The effective nuclear charge in t	he electron in F	le atom is :		
	(A) 2 (B) 1.7	(0	C) 1.15	(D)	1.65
3.	The electron configuration of Fe				
	(A) [Ar] $3d^5 4s^1$ (B) [Ar]] 3d ⁶ 4s ⁰ (0	(Ar) 3d ⁴ 4s ²	(D)	[Ar] 3d ⁵ 4s ⁰
4.	The radius ratio between 0.025	and 0.414 favou	ers the coordination	n numb	er of :
	(A) 8 (B) 4	(C) 6	(D)	3
5.	sp ³ hybridization results in	arrang	ement of hybrid or	bitals.	
			C) tetrahedral	(D)	linear
6.	The shape of NH ₃ is:				
-	(A) angular (B) py	ramidal (C) tetrahedral	(D)	linear
7.	Ethene has sigmas	bonds and	pi bonds.		
	(A) 1, 1 (B) 4,	1 (C) 6, 0	(D)	5, 1
8.	Which among the following is	the artificial rad	lioactive series ?		
	(A) Uranium Series		Actinium Series		
	(C) Neptunium Series		Thorium Series		

9.	The	splitting of spec	tral lin	es in an elec	tric fi	eld is	called:		
	(A)	Zeeman effect			(B)	Pho	toelectric effect		
	(C)	Stark effect			(D)	Tho	mson effect		
10.	Whi	ch among the fo	ollowin	g is parama	gnetic	?			
	(A)	СО	(B)	NO		(C)	O ² -	(D)	O ²⁺
11.	Whi	ch among the fo	llowin	g can form	intran	noleci	ılar hydrogen bo	nding	2
	(A)	benzoic acid	(B)	water		(C)	o-nitrophenol	(D)	p-nitrophenol
12.	Phot	toelectric effect	demon	strates the			nature of light.		
	(A)	wave		-	(B)	part	A CESTOS O		
	(C)	both particle a	nd wa	ve	200		her particle nor	wave	
13.	In a	reversible reacti	on, the	reaction ra	te of I	he ba	ckward reaction	is:	
	(A)	Positive			(B)	Neg	ative		
	(C)	Zero			(D)	Can	be positive or ne	egative	
14.	Hyd	rolysis of ethyl	acetate	in presence	of ex	cess o	of water is a		order reaction.
	(A)	zero	(B)	first		(C)	pseudo first	(D)	second
15.		rate of a chemica creased by 60°C,						rature.	If the temperature
	(A)	10 times	(B)	128 times		(C)	32 times	(D)	64 times
16.	Quan	ntum yield of th	e react	ion 2HBr →	H ₂ +	Br ₂ is	:		
	(A)	1	(B)	2		(C)	0.5	(D)	4
17.	Emis	sion of light as	a result	of chemical	l react	ion is	:		
	(A)	fluorescence			(B)	phos	sphorescence		
	(C)	chemiluminesc	ence		(D)	phot	osensitization		
140/	2014				4				A

	Color	tances which red	nce th	e quantum vie	eld of pho	otochemical	reactions ar	e called :
18.		photo inhibitors						photo sensitizers
19.	Whic	th of the followin	g is a	correct notation	on for an	orbital with	n=4 and 1	=2 ?
	(A)		(B)	4f	(C)			4s
20.	Na+	is isoelectronic v	vith:					
	(A)		(B)	Al ³⁺	(C)	Ca ²⁺	(D)	CI-
21.	Whi	ch of the followin	g hyb	ridizaton tend	s to give	maximum el	ectro negati	ivity for an atom?
		sp ²			B) sp			
		sp^3		(D) All l	nave the sam	e effect	
	F177.	ich of the followin	no is a	n-block eleme	ent?			
22.					(C)	Sr	(D)	Sb
	(A)	Rb	(B)	Cs	12			
23.	The	hybridization of	chlori	ine in ClF ₃ is :				
20.		sp ³		sp ³ d	(C)	dsp ³	(D)	None of these
24.	Wh	ich of the follow	ing is	unstable accor	ding to N	A.O. theory		
2000	(A)	+	(B)			He ₂	(D)	O ₂
25.	Ar	molecule having a	all the	bond angels e	equal to 9	0° is :	(77)	n G
	(A)	PCl ₅	(B)	CH ₄	(C)	SF ₆	(D)	BeCl ₂
26.	. Th	e hybridization o	f carb	on CO ₂ is:				
) sp	(B)		(C)) sp ³	(D)	sp ³ d
A					5			140/2014 [P.T.O.

21.	VVII	ich of the follow	ing and	a ₁₄ 51° are isoto	nes ?			
	(A)	₁₅ P32	(B)	₁₃ Al ²⁹	(C)	16 ^{S31}	(D)	16 ^{S33}
28.	The	stable end proc	luct of	Uranium series i	s:			
	(A)	83Bi ²⁰⁹	(B)	82Pb ²⁰⁶	(C)	₈₂ Pb ²⁰⁷	(D)	₈₂ Pb ²⁰⁹
29.	Whi	ch of the follow	ing nuc	clide is a fissile n	naterial	?		
	(A)	₉₂ U ²³⁸	(B)	₉₀ Th ²³²	(C)	91Pa ²³¹	(D)	92 ^{U235}
30.	The	nuclear fuel use	ed in th	e Nagasaki Bom	b was :			
	(A)	₉₂ U ²³³	(B)	₉₄ Pu ²³⁹	(C)	92 ^{U235}	(D)	₉₂ U ²³⁸
31.	The	electrochemical ation:	equiva	lent (z) of an ele	ment is	related to its e	quivale	nt mass (E) by
	(A)	E = z	(B)	E=96500z	(C)	z=96500E	(D)	z/E = 96500
32.	The	unit of molar co	nducta	nce is :				
	(A)	Ohm ⁻¹ cm m	ol-1	(B)	Ohm	-1 cm ³ mol ⁻¹		
	(C)	Ohm ⁻¹ cm ² n	nol ⁻¹	(D)	Ohm	-1 cm ⁻¹ mol	1	
33.	Whic	ch of the followi	ing par	ticles is the best	projecti	le in bombardn	nent rea	ctions ?
	(A)	1H2	(B)	₂ He ⁴	(C)	0 ⁿ¹	(D)	1H1
34.	The i	sotope used for	the trea	atment of Thyroi	d disor	ders is :		
	(A)	1132	(B)	Sr ⁹⁰	(C)	[¹³¹	(D)	Co ⁶⁰
35.	Whic	h of the followi	ng is no	ot a chelating lig	and ?			
	(A)	EDTA	(B)	Ethylene diamn	nine	(C) Oxalate	(D)	Ammonia

36.	Vitar	nin B ₁₂ is a coor	rdinatio	on com	pound	of:				
	(A)	Mg	(B)	СО			(C)	Fe	(D)	Zn
37.	Inter	system crossing	g is esse	ential fo	or:					
	(A)	Phosphorescer	nce		(B)	Fluo	rescence		
	(C)	Photosensitiza	tion		(D)	Cher	miluminescence	9	
38.	Smo	ke is an example	e of :					45-94-91		4
	(A)	an emulsion	(B)	a gel			(C)	a solid aeroso	(D)	a liquid aerosol
39.	How	v many significa	int figu	res are	preser	nt in	the n	umber 0.0038	,	
	(A)		(B)				(C)	2	(D)	1
40.	A w	reighing balance resentation for the	e is acc	urate t	o the r	neare	est m	illigram. Which	ch is the	correct numerical
	SAFAN	2.0 g	(B)	2.00			(C)	2.000 g	(D)	2.0000 g
41.	The	term used to ex	press p	recisio	n:					
	(A)	Standard dev				(B)	Rela	tive error		
	(C)	Molality				(D)	Mol	arity		
42.	Clo	seness to the me	easured	value	to the	corre	ect va	lue is called as	:	
	(A)		(B)		ігасу			Standard fac		Quotient
43.	In t	he titration of N	JaOH a	gainst	oxalic a	acid,	the i	ndicator used i	s:	
	(A)					(B)		thyl orange		
	(C)	KMnO ₄				(D)	Iod	ine		
44.	The	e external indica	itor use	d in di	chrome	etry	titrati	on is:		
	(A)	Potassium fe	rrocyar	ide		(B)	Pot	assium ferricya	nnide	
	(C)	N-phenyl and	thranili	c acid		(D)	KN	InO_4		
A						7				140/2014 {P.T.O.}
										[2,2,0,1]

45.	The	unit for concentration	which is ir	ndepen	dent o	of temperature :		
		Molarity (B)			(C)	Normality	(D)	Indicator
46.	The	substance used to pre	pare a solut	ion of	know	n concentration	is:	
	(A)	Primary standard	(B) Ind	icator	(C)	Buffer	(D)	Analyte
47.	Pick	out the odd one:						
	(A)	Astronomy (B)	Astrology	,	(C)	Phrenology	(D)	Acupuncture
48.	A h	ypothesis, if passes all	challenging	tests,	is pror	noted to:		
	(A)	Scientific hypothesis		(B)	Null	hypothesis		
	(C)	Theory		(D)	Auxi	liary hypothesis		
49.	The	best known scientific r	nethod is:					
	(A)	Positivism (B)	Empiricis	m	(C)	Induction	(D)	Deduction
50.	Whi	ch of the following sta	tements abo	ut rad	io acti	vity is not corre	ct?	
	(A)	It is a nuclear proper						
	(B)	It does not involve ar						
	(C)	It is not affected by the						
	(D)	The rate is affected by	y change of	tempe	rature	or pressure		
51.		oactive disintegration						
	(A)	An exothermic change	ge	(B)		ontaneous proce		
	(C)	A nuclear process		(D)	A firs	t order reaction		
52.	0							
52.	β-ray							
	(A)	Have greater ionizing			-			
	(B)	Possess greater penetr	and the second second			na rays		
	(C)	Are rejected when light					100 Miles	
	(D)	Carry charge opposite	in sign but	equal	in ma	ignitude than a	proton	

140/2014

8

53.	Alph	a rays consist of	a strea	am of :					
		H+	(B)	He ²⁺	((C)	Only electrons	(D)	Only neutrons
54.	Unit	of radioactivity	:						
	(A)	Rad	(B)	Grey		(C)	Becquerel	(D)	Curie
55.	Whe	n passing throug	gh a m	agnetic field, t	the la	argest	deflection is ex	perienc	ced by:
	(A)		(B)	β-rays		(C)	γ-rays	(D)	All equal
56.	Witl	h the passage of	time, t	he rate of radi	ioacti	ive di	isintegration:		
	(A)	Increases			(B)		reases		
	(C)	Remains same		((D)	May	increase or decr	rease	
=7	In t	he reaction ₄ Be ⁹	+ X → :	B ⁹ +γ, X is:	\langle				
57.	(A)		(B)	Deuterons		(C)	Positron	(D)	Neutrons
58.	Wh	ich of the follow	ing pr	ojectiles is the	best	for b	ombarding the a	rticles	?
	(A)			protons		(C)	deuterons	(D)	neutrons
59.	Wł	nich of the radioa	ctive s	series has Bism	nuth	as en	d product?		
(5)3-3) 4n	(B)			(C)	4n + 2	(D)	4n+3
60.	Th	e lowest lattice e	nergy	among the fol	lowii	ng cr	ystals is :		
) NaCl	(B)			(C)	RbCl	(D)	CsCl
61.	Th	e Born exponent	of Ag	+ ion type is :					
) 5	(B	N 7000		(C)	9	(D)	10
62	. Th	ne correct order o	f decr	easing polarisi	bility	of th	ne ions is :		
		Cl, Br, F, I	(B) Cl, I, Br, F		(C)	Br, F, I, Cl	(D) I, Br, Cl, F
A					9				140/201 {P.T.O

63	3. Which of the following has the high	hest ion	nization energy ?		
	(A) $Na \rightarrow Na^+ + e$ (B) $Al \rightarrow A$			++e (D) Al ²⁺	\rightarrow Al ³⁺
64	. The magnitude of lattice energy of a	a solid i	increases if the ions	are :	
	(A) Large (B) Small		(C) Equal size	(D) No ef	ffect
65	. Born-Haber cycle is used to determi	ne :			
	(A) Electronegativity	(B)	Entropy		
	(C) Lattice energy	(D)			
66.	Paracetamol is a :				
	(A) Hypnotic	(Th)			
	(C) Anti depressants	(B)	Anti pyretics		
	(a) This depressants	(D)	Tranquillisers		
67.	The maximum electron capacity of a	ny orbi	tal is:		
	(A) 2 (B) 3		(C) 8	(D) 6	
68.	Which among the following has the I	highest	ionization energy?		
	(A) Boron (B) Carbon		(C) Nitrogen	(D) Oxygen	n
69.	The function of the atom bomb is base	ed on :			
	(A) natural radioactivity	(B)	nuclear fission and	Chain reastless	
	(C) spontaneous chemical reactions	17. 15.	nuclear fusion	chan reactions	
70.	With dilution, the molar conductance	of an e	lectrolytic solution :		
	(A) decreases	(B)	increases		
	(C) remains unchanged	(D)	decreases or increas	ses	
71.	Bauxite is an ore of :				
	(A) Copper (B) Aluminius	m	(C) Zinc	(D) Titanium	n
40/2	2014	10			
		20			Λ

72.	The e	electron affinity of	grou	p 18 elemen	nts is:				
	(A)	zero			(B)	large	r than halogens		
	(C)	larger than alkal	i meta	nls	(D)	large	r in the period o	of eleme	ents
73.	The r	most electronegati	ive ele	ement is:					
	(A)	oxygen	(B)	nitrogen		(C)	chlorine	(D)	fluorine
74.	The	coordination num	ber o	f cobalt in	[co(en)) ₂ Cl ₂]	is:		
	(A)	3	(B)	4		(C)	5	(D)	6
75.	Born	-Haber cycle is us	sed to	calculate:					
	(A)	refractive index	(B)	density		(C)	R _f Value	(D)	lattice energy
76.	Sulp	hide ions are con	centra	nted by :					
	(A)	leaching			(B)	frotl	n floatation		
	(C)	liquation			(D)	mag	netic separation	n	
77.	Fruc	ctose is a :							
	(A)	aldopentose	(B)	ketohexo	se	(C)	aldohexose	(D)	ketopentose
78.	Nur	mber of elements	in the	4 th period	of the	perio	dic table is :		
	(A)	8	(B)	10		(C)	18	(D)	32
79.	The	most stable form	of cy	clohexane i	is:				
	(A)	chair	(B)	half chai	r	(C)	boat	(D)	twist boat
80.	Ide	ntify the spectra t	hat co	orresponds	to the	frequ	ency 690 cm ⁻¹	:	
	(A)		(B)	NMR		(C)			UV
A					1	1			140/201 (P.T.O.

81.	Whi	ich among the fol	lowing	state func	tions	is an e	xtensive proper	ty of th	e system ?	
	(A)	temperature	(B)	volume		(C)	viscosity	(D)	refractive i	ndex
82.	The	photon of wavele	ength 40	00 nm cor	respon	nds to	:			
	(A)	20,000 cm ⁻¹	(B)	25,000 cm	1-1	(C)	50,000 cm ⁻¹	(D)	40,000 cm	-1
83.	The	reagent used for	the ider	ntification	of nic	kel io	n in qualitative a	analysis	is:	
	(A)	Potassium ferro	cyanide		(B)	DMC				
	(C)	EDTA			(D)	Ness	ler's reagent			
84.	The	shift of an absorp	otion bar	nd to the	longer	r wave	elength region is	called		
	(A)	blue shift	(B) 1	red shift		(C)	yellow shift	(D)	none of the	se
85.	The	catalyst used for	Friedal	Crafts rea	action	is:				
	(A)	Anhydrous AlC	13		(B)	AICI	3			
	(C)	FeCl ₃			(D)	ZnCl	3			
86.		element with high			nity an	nong l	alogens is:			
	(A)	F	(B) (21		(C)	Br	(D)	I	
	D									
87.		ng point of water				he exp	ected value. Th	is is du	ie to	_
	(A)	Intra molecular			-					
	(B)	Inter molecular		en bondin	g					
	(C)	Both (A) and (B)								
	(D)	Covalent bondir	ng							
00	Com	luction due to the		0 ()						
88.		fuction due to the		now of el						
	(A)	ionic conduction			(B)		olytic conductio			
	(C)	electronic condu	cuon		(D)	molec	ular conduction	1		
140/	2014				12					A

89.	The	quantum number	's' de	notes :					
	(A)	principal energy	level		(B)	dege	eneracy of orbita	ls	
	(C)	number of node	s		(D)	spin	orientation of a	n elect	ron
90.	The	compounds H ₂ O	and H	I ₂ O ₂ can be	used	to illu	ustrate the law o	f:	
	(A)	constant propor	tion		(B)	recip	procal proportion	n	
	(C)	multiple propor	tion		(D)	gase	ous volumes		
91.	The	first transition ser	ies be	gins with :					
	(A)	titanium	(B)	scandium		(C)	vanadium	(D)	manganese
92.	A tri	iangular arrangen	nent o	f atoms aris	es du	e to			
12.				atoms ans	(B)		hybridisation		
	(A)					201	hybridization		
	(C)	sp ³ hybridisatio			(D)	Sp c	nyondization		
93.	The	critical temperatu	re T _c	is related to	Van	derwa	nal's constant by	the re	lation :
	(A)	$T_c = 3b$	(B)	$T_c = a/27b$	2	(C)	$T_c = 8a/27Rb$	(D)	$T_c = 2b$
94.	Give	the number of m	odes	of vibrations	s poss	ible f	or CO ₂ :		
	(A)	1	(B)	2		(C)	3	(D)	4
95.	The	hydrolysis of sod	ium ac	cetate result	s in a	solut	ion which is:		
,,,,	(A)		(B)	basic		(C)	neutral	(D)	cannot predict
	1, 1								
96.	Ostv	vald dilution law	is app	olicable to:					
	(A)	weak electrolyte	es		(B)	both	weak and stron	g elect	rolytes
	(C)	strong electrolyt	es		(D)	none	e of these		
A					13				140/20
									{P.T.0

The potential of saturated calomel electrode at 25° C is:

- (A) 0 V
- (B) 0.3335 V
- (C) 0.2422 V (D) 1 V

NaCl belongs to the crystal system: 98.

- (A) hexagonal
- (B) cubic
- (C) monoclinic
- (D) triclinic

IR spectra of solid samples are usually taken by mixing the sample with: 99.

- (A) TMS
- (B) Benzene
- (C) KBr
- (D)

100. Crystalline solids are characterised by :

(A) long range order

sharp melting point

anisotropy (C)

(D) all the above

-000-