

22/2019

Question	Booklet
Alpha	Code

	A	_
$\overline{}$		

Question Booklet Serial Number

Total Number of Questions : 100	Time: 75 Minutes
Maximum Marks: 100	

INSTRUCTIONS TO CANDIDATES

- 1. The question paper will be given in the form of a Question Booklet. There will be four versions of question booklets with question booklet alpha code viz. **A**, **B**, **C** & **D**.
- 2. The Question Booklet Alpha Code will be printed on the top left margin of the facing sheet of the question booklet.
- 3. The Question Booklet Alpha Code allotted to you will be noted in your seating position in the Examination Hall.
- 4. If you get a question booklet where the alpha code does not match to the allotted alpha code in the seating position, please draw the attention of the Invigilator IMMEDIATELY.
- 5. The Question Booklet Serial Number is printed on the top right margin of the facing sheet. If your question booklet is un-numbered, please get it replaced by new question booklet with same alpha code.
- 6. The question booklet will be sealed at the middle of the right margin. Candidate should not open the question booklet, until the indication is given to start answering.
- 7. Immediately after the commencement of the examination, the candidate should check that the question booklet supplied to him contains all the 100 questions in serial order. The question booklet does not have unprinted or torn or missing pages and if so he/she should bring it to the notice of the Invigilator and get it replaced by a complete booklet with same alpha code. This is most important.
- 8. A blank sheet of paper is attached to the question booklet. This may be used for rough work.
- 9. Please read carefully all the instructions on the reverse of the Answer Sheet before marking your answers.
- 10. Each question is provided with four choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and darken the bubble corresponding to the question number using Blue or Black Ball Point Pen in the OMR Answer Sheet.
- 11. Each correct answer carries 1 mark and for each wrong answer 1/3 mark will be deducted. No negative mark for unattended questions.
- 12. No candidate will be allowed to leave the examination hall till the end of the session and without handing over his/her Answer Sheet to the Invigilator. Candidates should ensure that the Invigilator has verified all the entries in the Register Number Coding Sheet and that the Invigilator has affixed his/her signature in the space provided.
- 13. Strict compliance of instructions is essential. Any malpractice or attempt to commit any kind of malpractice in the Examination will result in the disqualification of the candidate.

22/2019

1.

1.	Max is:	imum permissil	ole limit	of nitrate r	itroge	n in d	rinking water a	as per W	HO standard
	(A)	45 mg/L	(B)	5 mg/L		(C)	10 mg/L	(D)	25 mg/L
2.	It is	desirable that C	CRH of a	a fertilizer s	hould	be:			
	(A)	High	(B)	Low		(C)	Very low	(D)	Medium
3.	Whe	n a pesticide do	ose of 0.	5 to 2.0 kg/	ha is a	applie	d, its concentra	tion in t	he upper soil
	(A)	0.25 to 1.0 mg	g/kg		(B)	0.5 t	o 2.0 mg/kg		
	(C)	0.1 to 1.0 mg/	'kg		(D)	1.0 t	o 2.0 mg/kg		
4.	Amr	nonia volatiliza	tion los	ses are of g	reat ir	nporta	ance in :		
	(A)	Acidic soils			(B)	Soils	with high CE	С	
	(C)	Calcareous so	ils		(D)	Soils	with high clay	y conten	t
5.	Prod	lucer gas contai	ns:						
	(A)	Hydrogen and	d carbor	n monoxide	(B)	Nitro	ogen and hydr	ogen	
	(C)	Carbon mono	xide an	d nitrogen	(D)	All t	he above		
6.	On o	comparing with	humic	acid, fulvic	acid l	has :			
	(A) (C)	More hydroph Higher molecu			(B) (D)	_	ner carbon and e polymerized		
_	` '	C			,		1 7	1	
7.		no acids are po	•	o .					
	(A) (B)	At pH value a Under neutral		e isoeiectric	z pom	Į.			
	(D) (C)	Under alkalin	-						
	` ′	At pH value b	-	ne isoelectri	c poin	t			
8.	Feld	spars belong to	the silic	cate minera	1 grou	n.			
•	(A)	Inosilicate	1210 0222		(B)	-	osilicate		
	(C)	Tektosilicate			(D)	•	losilicate		
9.	Bacil	<i>lus</i> comes unde	r the gr	oup.					
	(A)	Aerobes	· ·	-	(B)	Facu	ıltative anaerol	oes	
	(C)	Oligate anaero	obes		(D)	Micı	roaerobes		
A					3				
									{P.T.O.}

10.	Ave	rage chlorine co	ontent i	n plant tiss	ue.				
	(A)	0.1%	(B)	20 mg/kg	5	(C)	0.1 mg/kg	(D)	100 mg/kg
11.	Sme	ctite group cons	sists of	the followin	ng mir	neral/:	minerals :		
	(A)	Montmorillon	ite (B)	Beidellite		(C)	Nontronite	(D)	All the above
12.	Whi	te alkali soils ha	ive:						
	(A)	pH > 8.5			(B)	Neu	tral soluble salts		
	(C)	$EC < 4.0 \text{ dS/}_1$	n		(D)	ESP	> 15% of CEC		
13.	Whi	ch one of the fo	llowing	g is an easil	y weat	thered	l mineral :		
	(A)	Feldspar	(B)	Quartz		(C)	Muscovite	(D)	Olivine
14.	The	dominant mine	ral in sl	hale is :					
	(A)	Clay	(B)	Quartz		(C)	Calcite	(D)	Feldspar
15.	The	net effect of ad	ding or	ganic matte	er to ac	cidic s	oils is generally	an :	
	(A)	Increase or de	crease i	in pH	(B)	Dec	rease in pH		
	(C)	Increase in pl	I	-	(D)	Non	e of the above		
	` '	-			` ′				
16.	Amı	monium polypl	nosphat	e contain _			% P ₂ O ₅ .		
	(A)	48			(B)	60			
	(C)	28			(D)	Non	e of the above		
17.	The	contribution of	organic	matter of	CEC is	s great	test for soils hav	ing :	
	(A)	High complex	ation o	f aluminiur	n and	iron			
	(B)	Minerals with	high c	harge densi	ity				
	(C)	Low clay con	tent						
	(D)	None of the a	bove						
18.	Арр	roximate half li	fe of 2,4	4-D in soil i	s:				
	(A)	One month	(B)	One year		(C)	Six months	(D)	Five days
19.	Stro	ntium-90 behav	es in so	il much the	e same	as:			
	(A)	Potassium	(B)	Calcium		(C)	Magnesium	(D)	Iron
20.	Amı	nonium ion mo	ves thr	ough the pl	lasma :	memb	orane primarily b	by:	
	(A)	Active transp	ort (B)	Mass flov	V	(C)	Diffusion	(D)	All the above
22/1	0010				1				

21.	SO_4^{-2} adsorption capacity of the soil is decreased by :								
	(A)	Increased soil pl	Η		(B)	Decr	eased P con	tent	
	(C)	Decreased soil p	Н		(D)	Non	e of the abov	ve .	
22.	Majo	or sources of atmo	osphei	ric sulfur.					
	(A)		1		(B)	Soils			
	(C)	Volcanic emission	ons		(D)	Soils	and industr	y	
23.		ciency of e complexes with			pected	d in o	rganic soils	due to the	formation of
	(A)	Zinc	(B)	Copper		(C)	Mn	(D)	Fe
24.	Avai bar.	lable water is held	d in th	ne soil again	st a p	ressur	e of upto ap	proximatel	у
	(A)	0.1	(B)	0.3		(C)	15	(D)	31
25.	A so	il to be designated	d as c	lay if it has	a clay	sepa	rate of :		
	(A)	Not less than 40	%		(B)	> 30	%		
	(C)	30 - 35%			(D)	> 20	%		
26.	Parti	cle density of soil	is aff	ected by :					
	(A)	Fineness of parti		•	neral				
	(B)	Arrangement of							
	(C)	Organic matter	conte	nt					
	(D)	All the above							
27.		radii of Al ³⁺ is:					0		
		0.39 Å			(B)	0.50	•		
	(C)	0.64 Å			(D)	0.41	A		
28.	0	reduction in plan	ts is c	losely linke	d to:				
		Photosynthesis			(B)	-	piration		
	(C)	Fatty acid metab	olism	l	(D)	All t	he above		
29.		on exchange capa	•	f chlorite is			nat of	·	
	(A)	Montmorillonite	!		(B)	Illite			
	(C)	Vermicullite			(D)	Non	e of the abov	ve .	
30.		ogenase enzyme c		ts of:					
	, ,	8 protein comple			(B)	-	otein comple		
	(C)	6 protein comple	ex		(D)	4 pro	otein comple	ex	

31.	Poly	phenols are produ	aced i	in soil durin	g the	miner	alization of lign	in.		
	(A)	Under aerobic c	onditi	ions with pH	H > 5.	5				
	(B)	Anaerobic envir	onme	ent						
	(C) Acid conditions									
	(D)	Alkaline conditi	ons							
32.	The	equilibrium const	ant K	c depends	on:					
	(A)	Pressure		1	(B)	Tem	perature			
	(C)	Composition of	the sy	stem	(D)	All t	he above			
33.	The	The three carbon compound formed by the reaction between ${\rm CO_2}$ and RUBP is :								
	(A)	G_3P	(B)	Oxaloaceta	ate	(C)	Malate	(D)	PGA	
34.	Mon	tmorillonite has a	unit	layer charge	e of:					
	(A)	0.5			(B)	1.0				
	(C)	2.0			(D)	None	e of the above			
35.	Zeta	potential can be	reduc	ed by:						
	(A)	Lowering of pH			(B)	Intro	ducing multi ch	narged	ions	
	(C)	Adding simple s	alts		(D)	All t	he above			
36.	Whi	ch one of the follo	wing	; is a photos	ynthe	tic N i	fixing bacteria ?			
	(A)	Azotobacter	(B)	Beijerinckia	ı	(C)	Rhodospirillum	(D)	Clostridium	
37.	The	most abundant fo	rm of	f organic P c	ompo	ound i	n soil is :			
	(A)	Inositol phospha	ate		(B)	Phos	pholipid			
	(C)	Nucleic acid			(D)	Phos	sphoproteins			
38.	The	first study on legi	ıme -	Rhizobium s	ymbio	osis co	onducted in Indi	a by :		
	(A)	Sen and Pal	(B)	V. Iswarar	ı	(C)	N.V. Joshi	(D)	Boussingault	
39.	Envi	ronmental Protec	tion A	Act came int	o forc	e in t	he year :			
	(A)	1927	(B)	1948		(C)	1974	(D)	1986	
40.	The	Universal Soil Los	ss Equ	uation was d	levelo	ped b	y:			
	(A)	Wischmeier and	Smit	:h	(B)	Chep	oil and Woodru	ff		
	(C)	Sharma and Pra	sad		(D)	Dhru	ıva Narayana			

41.	Whi	ch state in India is the largest prod	ucer	of saffron?
	(A)	Jammu and Kashmir	(B)	Sikkim
	(C)	Himachal Pradesh	(D)	Gujarat
42.	Whi	ch one of the following is NOT a b	asic f	eature of the Indian Constitution ?
	(A)	Parliamentary form of Governme	ent	
	(B)	Federal Government		
	(C)	Independence of Judiciary		
	(D)	Presidential form of Government		
43.	Who	is the present Chairman of NITI A	Aayog	;?
	(A)	Mr. Rajiv Kumar	(B)	Shri Narendra Modi, The Prime Minister
	(C)	Dr. Bibek Debroy	(D)	Prof. Ramesh Chand
44.	Who	presided over the Surat Session of	f the l	Indian National Congress ?
	(A)	Rashbehari Ghosh	(B)	Dadabhai Naoroji
	(C)	W.C. Banerji	(D)	Gopalakrishna Gokhale
45.	In w	hich language Gandhiji published	the p	paper Harijan ?
	(A)	Gujarati (B) Hindi		(C) English (D) Urdu
46.		which date Prime Minister Shri Na rance Scheme ?	arend	ra Modi announced, Ayushman Bharat Health
	(A)	25 th September, 2018	(B)	15 th August, 2018
	(C)	22 nd October, 2018	(D)	23 rd September, 2018
47.	Who	built the Dutch Palace at Mattano	cherry	v in 1555 ?
	(A)	The Dutch East India Company	(B)	The French East India Company
	(C)	The English East India Company	(D)	The Portuguese
48.	The	most important lake in North Kera	la is :	
	(A)	Kavvayi lake	(B)	Vembanad lake
	(C)	Kayamkulam lake	(D)	Sastham Kotta lake
49.	Whi	ch Travancore ruler, shifted the (Capit	al of Travancore from Padmanabhapuram to
		uvananthapuram ?	=	-
	(A)	Marthanda Varmma	(B)	Gowri Parvathi Bhai
	(C)	Balarama Varmma	(D)	Dharma Raja
Α			7	22/2019

30.	(A) 1700 (B) 1789	шпатно	(C) 1767 (D) 1800
51.	In which works Chattampi Swami non-violence ?	kal has	s expressed his profound faith in Ahimsa or
	(A) Adi Bhasha	(B)	Advaita Chinta Paddhati
	(C) Kristu Matanirupanam	(D)	Jivita Karunyanirupanam
52.	The first of the temples consecrated by	oy Sri N	Jarayana Guru was at :
	(A) Aruvippuram in Neyyattinkara	a (B)	Jaganath Temple, Tellicherry
	(C) Advaita Asramam at Alwaye	(D)	Sarada Matam, Shivagiri
53.	Chirayankizh Taluk Muslim Samajan	n was f	•
	(A) Ali Musliyar	(B)	Kalathingal Muhammed
	(C) Vakkom Abdul Khadar Maula	vi (D)	Muhammed Abdu Rahiman
54.	In which year Kuriakose Chavara es	tablishe	ed CMI Church at Mannanam ?
	(A) 1871 (B) 1831		(C) 1805 (D) 1806
55.	'Kallumala Samaram' an agitation ur	nder the	e leadership of Shri Ayyankali took place at :
	(A) Veganoor (B) Oorattar	mbalam	n (C) Changanasseri (D) Perinad
56.	Who is the architect of 'Statue of Uni	ty', wor	rld's tallest statue built at Kevadiya in Gujarat ?
	(A) B.V. Dhoshi	(B)	R.V. Suthar
	(C) Anupama Kundoo	(D)	Raj Rewal
57.	Who is the present Chief Minister of	Sikkim	?
	(A) Pawan Kumar Chamling	(B)	Sarbananda Sonowal
	(C) Nongthombam Biren Singh	(D)	Jai Ram Thakur
58.	Who won the ONV Literary Award	for the	year 2018 ?
	(A) Sugatha Kumari	(B)	M. Mukundan
	(C) M.T. Vasudevan Nair	(D)	Subhash Chandran
59.	Who has won the women's singles ti	tle in th	ne Australian open, 2018 ?
	(A) Serena Williams	(B)	Venus Williams
	(C) Simona Halep	(D)	Caroline Wozniacki
22/2	2019	8	Α

Who is the director of the film 'Kayamkulam Kochunni'?

60.

	(A)	Nivin Pauly			(B)	R. S	ukumaran			
	(C)	Roshan Andrew	WS		(D)	Lal J	ose			
<i>(</i> 1	TTI	1	1	(1,1,4	4 1					
61.		effective nuclear	_	-	e 4s ele				1 (5	
	(A)	3.25	(B)	3.60		(C)	5.1	(D)	1.65	
62.	Whi	ch among the fol	lowing	g is the mos	st app	ropria	ite statement(s) ?		
	(I)	Bromides have		•		-	•	•		
	(II)		of ion	ic compour	•		0		th decrease in the	
	(III)	The hardness of	f ionic	compound	s incre	eases v	with increase in	n the deg	ree of polarisation.	
	(IV)	V) The solubility of ionic compounds in polar solvents decreases with increase in the degree of polarisation.								
	(V)	Bromides have	lesser	lattice ener	gies ai	nd hig	her stabilities.			
	(A)	Statement (V) i	s corre	ect.						
	(B)	Statements (I) a	ınd (II) are correc	t.					
	(C)	Statements (I) a	nd (IV	V) are corre	ct.					
	(D)	Statements (I),	(III) ar	nd (IV) are	correc	t.				
63.	The	geometry of ClO	$\frac{1}{3}$ ion	as predicted	d by V	SEPR	theory is:			
	(A)	Trigonal Plana	r (B)	Pyramida	1	(C)	T shaped	(D)	Tetrahedral	
64.	Cho	ose the incorrect	pair :							
	(A)	Sharp transition	n and	fluorescenc	e in la	anthar	nides			
	(B)	d-d transition a	nd col	lour of the	compo	ounds				
	(C)	Charge transfer	and l	nigh molar	absor	ption	coefficient			
	(D)	High magnetic	mome	ent among l	lantha	nides	and Samariun	n (III)		
65.	Al(C	· ·H ₃) ₃ is an examp	ole of :	:						
	(A)	A hard acid	(B)		ase	(C)	A soft acid	(D)	A soft base	
	()		()			(-)		()		
66.	The	non-aqueous solv	vent w	ith longest	liquid	range	e is:			
	(A)	HF	(B)	NH_3	•	_	N_2O_4	(D)	H_2SO_4	
				0			- 1		- 1	
67.	In thare:	ne pressure range	e 1 kPa	a to 100 kP	a, the	Hill o	constants for F	Iemoglob	oin and Myoglobin	
	(A)	2.8 and 1.0 resp	ective	ely	(B)	1.0 a	and 3.0 respect	tively		
	(C)	4.0 and 1.0 resp	ective	ely	(D)	1.0 a	and 4.0 respec	tively		
•					^				00 /0040	
A					9				22/2019	
									{P.T.O.}	

- An old wooden stool was found to give 7.7 disintegrations $g^{-1} \min^{-1}$. If a fresh wooden material showed a C^{14} ($t_{1/2}$ =5730 years) activity of 15.4 disintegrations $g^{-1} \min^{-1}$, age of the sample is:
 - (A) 3433 years
- (B) 8271 years
- (C) 5732 years
- (D) 9144 years

- Choose the **odd** function among the following:
 - (A) $\cos x$
- (B) $x^2 \sin x$
- (C) $\cosh x$
- (D) e^{ix}
- The Van Der Waals constants of a gas are : $a = 0.7 \text{ dm}^6 \text{ atm.mol}^{-2} \text{ and } b = 0.02 \text{ dm}^3 \text{mol}^{-1}$. 70. The critical temperature of the gas is:
 - (A) 65 K
- (B) 126 K
- (C) 0.06 K
- (D) 10.4 K
- Choose the **incorrect** relation from the following thermodynamic equations:
 - (A) $\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V}$
- (B) $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$
- (C) $\left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial A}{\partial V}\right)_T$
- (D) $\left(\frac{\partial H}{\partial P}\right)_{C} = \left(\frac{\partial G}{\partial P}\right)_{T}$
- The molar ionic conductance at infinite dilution of lithium chloride (LiCl) is found to be 72. $8.92 \text{ mS m}^2 \text{ mol}^{-1}$. If the molar ionic conductance of Li⁺ion is $3.87 \text{ mS m}^2 \text{ mol}^{-1}$, the molar ionic conductance of chloride ion would be:
 - (A) $12.79 \text{ mS m}^2 \text{ mol}^{-1}$
- (B) $4.33 \text{ mS m}^2 \text{ mol}^{-1}$
- (C) $12.79 \text{ ms m}^2 \text{ mol}^{-1}$ (C) $2.31 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$
- (D) $50.5 \times 10^{-4} \text{ S m}^2 \text{ mol}^{-1}$
- If k, the rate constant for the decomposition of N_2O_5 is 5×10^{-4} s⁻¹, the time required for the N_2O_5 concentration to be 50% of the original value is:
 - (A) 1.38×10^3 s

(B) $2 \times 10^3 \text{ s}$

(C) $6.02 \times 10^2 \text{ s}$

- (D) None of the above
- 74. The **correct** order of efficacy for coagulating a lyophobic sol. is given by :

 - (A) $Mg^{2+} > Ba^{2+} > Ca^{2+} > Na^{+} > K^{+}$ (B) $Ba^{2+} > Mg^{2+} > Ca^{2+} > K^{+} > Na^{+}$ (C) $Ca^{2+} > Ba^{2+} > Mg^{2+} > K^{+} > Na^{+}$ (D) $Mg^{2+} > Ca^{2+} > Ba^{2+} > Na^{+} > K^{+}$
- The dissociation constant of acetic acid is 2×10^{-5} at 25°C. What would be the pH of an 75. aqueous solution obtained by mixing 0.3 g of acetic acid and 4.1 g of sodium acetate and making a 500 ml solution?
 - (A) 5.8

3.79 (B)

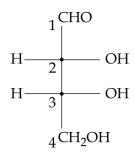
(C) 4.25

(D) None of the above

76. For the system:

$$Ni_{(s)} + 2Ag^{+}_{(aq)} \rightarrow Ni^{2+}_{(aq)} + 2Ag_{(s)}$$

the Nernst equation can be written as:


(A)
$$E_{cell} = E_{cell}^0 - \frac{RT}{2F} ln \left[\frac{Ni^{2+}}{Ag^+} \right]$$

(B)
$$E_{cell} = E_{cell}^{0} - \frac{RT}{2F} ln \frac{\left[Ni^{2+}\right]^{2}}{\left[Ag^{+}\right]^{2}}$$

(C)
$$E_{cell} = E_{cell}^0 - \frac{RT}{2F} ln \frac{\left[Ni^{2+}\right]}{\left[Ag^+\right]^2}$$

(D)
$$E_{cell} = E_{cell}^{0} - \frac{RT}{2F} ln \frac{\left[Ni^{2+}\right]}{\left[Ag^{+}\right]^{1/2}}$$

77. The **correct** IUPAC name of the compound A is:

Compound A

- (A) (2R, 3R)-2, 3, 4-trihydroxybutanal
- (B) (2S, 3S)-2, 3, 4-trihydroxybutanal
- (C) (2R, 3S)-2, 3, 4-trihydroxybutanal
- (D) (2S, 3R)-2, 3, 4-trihydroxybutanal

78. In the most stable conformation of *trans*-1-t-butyl-3-methylcyclohexane, the t-butyl group at C1 and methyl group at C3 are :

- (A) Equatorial and axial respectively
- (B) Axial and equatorial respectively
- (C) Equatorial and equatorial respectively
- (D) Axial and axial respectively

79.	Cho	ose the <mark>correct</mark>	stateme	ent(s) abou	t [18]- <i>A</i>	Annul	ene.			
	(A)	[18]-Annulen	e is non	-aromatic	due to	the n	on-planar stri	ucture		
	(B)	All the hyd δ (9.25 ppm)						indicate	d by a sing	let at
	(C) (D)	Six inner hyd There are two	_					_	,	om)
80.	The	reaction in wh	ich nitre	ene is not a	n inter	media	ite is :			
	(A)	Curtius react	ion		(B)	Arn	dt-Eistert read	ction		
	(C)	Hoffman rea	ction		(D)	Schr	midt reaction			
81.	The	reaction used f	for the co	onversion (of an al	an aldose into the next higher ketose is:				
	(A)	Wohl's Meth	od		(B)	Ruff	's Method			
	(C)	Wolfram's M	lethod		(D)	Sow	den-Fischer S	Synthesis		
82.	The	intermediate a	ssociate	d with Wo	lff rear	range	ment reaction	is:		
	(A)	Nitrene	(B)	Ketene		(C)	Carbene	(D)	Carbanion	
83.	. Which of the following vitamins and their deficiency diseases are not correctly matched?						•			
	(A) (C)	Vitamin C - S Vitamin B ₄ -	-		(B) (D)		min B ₁₂ - Per min B ₆ - Beri-		nemia	
84.	The	reaction used f	for the sy	ynthesis of	α-amii	no aci	ds is :			
	(A) (C)	Schmidt reac Strecker's syn			(B) (D)		fman's degradus method	dation rea	ction	
85.	In th	ie complexome	tric estir	nation of C	Ca ²⁺ , w	hich o	of the followin	ng is a ma	sking agent ?	•
	(A)	Cyanide ion			(B)	Erio	chrome Black	T		
	(C)	NH ₄ Cl			(D)	NH	_i OH			
86.	dete	molar absorption ctable absorbar cted using a sa	nce is 0.0	01. The mi	nimum					
	(A)	$0.8 \times 10^{-6} \text{ M}$	(B)	0.01 M		(C)	0.12 M	(D)	8.33×10^{-6}	M
87.	The	number of sign	nificant f	igures in t	he follo	wing	measuremen	t is :		
	Tem	perature = 0.0	0045°C							
	(A)	4	(B)	2		(C)	5	(D)	1	
22/2	2019				12					A

(IV) Error distribution curves for a more accurate set of results is in close proximity to

A precise value shows the agreement between several experiments.

Choose the correct sentence(s) regarding accuracy and precision.

(II) The precise value must be in agreement with true value.(III) Standard deviation is used to express the accuracy of experiments.

88.

(I) (II)

the true value.

	(A) All the statements are correct									
	(B)	Statements (I) and (IV) are correct	ct							
	(C) Statements (I) and (III) are correct									
	(D) Statements (II) and (IV) are correct									
89.	9. The sharp band at wavelength 528 nm in the UV - Vis absorption spectra of KMnO $_4$									
09.		be attributed to:	ımıu	te σ_{V} - vis absorption spectra of RivinO ₄						
	(A)	LMCT transition	(B)	d-d transition						
	(C)	MLCT transition	(D)	Jahn-Teller distortion						
90.	The C-O		ional	frequency for C-Cl, C-C, C-Br, C-H and						
		C-Br, C-Cl, C-O, C-H, C-C	(B)	C-O, C-H, C-Br, C-Cl, C-C						
	` '	C-Cl, C-Br, C-O, C-C, C-H	` '	C-H, C-C, C-O, C-Cl, C-Br						
91.				hree peaks at $m/z = 84$, 86 and 88 in a ratio						
		: 1 are assigned to the parent ion.		e peaks are due to :						
	(A)		•							
	(B)	,	sily							
	(C)	-								
	(D)	Cl has three isotopes								
92.	A ¹ F	H-NMR spectrum of compound co	ontain	s a singlet, a triplet and a quartet peaks.						
	Cho	ose the possible compound from th	ne foll	owing:						
		CH ₃ CH ₂ CHCl ₂	(B)	CH ₃ CCl ₂ CH ₂ CH ₃						
	(C)	CH ₃ CH ₂ CHClCHCl ₂	(D)	CH ₃ CHCICHCICH ₃						
93.	Whi	ch of the following statement(s) is	true f	or condensation polymers ?						
	(I)	Polymer structure contains only								
	(II)	Monomers used can be bifunction								
	(III)									
	(A)	· -	(B)	Only (III) is correct						
	(C)	(I) and (II) are correct	(D)	(II) and (III) are correct						

(C) -N=N-

(D) -N=O

Which of the following is an auxochrome?

(B) -NO₂

(A) -OH

- 95. The compound showing insecticidal properties is:
 - (A) hexachlorobenzene
- (B) β-hexachlorocyclohexane
- (C) γ-hexachlorocyclohexane
- (D) θ -hexachlorocyclohexane
- **96.** Which of the following is NOT a function of a food additive?
 - (A) Maintaining the product taste
- (B) Keeping the nutritive value
- (C) Controlling the pH
- (D) None of the above
- **97.** The antibiotic effect of sulfadrugs is due to :
 - (A) The presence of sulphur which is an antibiotic
 - (B) Their structural similarity with *p*-aminobenzoic acid amide
 - (C) Their ability to burst the cell walls of bacteria
 - (D) Their reaction with folic acid
- 98. Identify a molecule which can be used as soap:
 - (A) Calcium palmitate
- (B) Potassium adipate
- (C) Magnesium linoleate
- (D) Sodium stearate
- 99. Which of the following is saccharin?

$$(C) \qquad \qquad \bigcup_{\substack{O \\ Na^{\oplus} \\ Cl}} Na^{\oplus}$$

- CI CI CI CI CI
- **100.** The condition in which the ratio of chemical nutrients in ecosystem increases beyond optimal value is known as :

(D)

(B)

- (A) Bioaccumulation
- (B) Eutrophication
- (C) Biomagnification
- (D) Pollution

- o O o -

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK